Um Método Numérico para Simular Escoamentos Incompressíveis de Fluidos de Segunda Ordem
DOI:
https://doi.org/10.5540/tema.2006.07.01.0063Abstract
Neste trabalho apresenta-se um método numérico para simular escoamentos viscoelásticos com superfícies livres de fluidos de segunda ordem com elasticidade moderada. As equações governantes são resolvidas utilizando uma técnica e diferenças finitas baseada na metodologia GENSMAC. Uma malha deslocada é empregada e partículas marcadoras são usadas para representar a superfície livre do fluido. O método numérico apresentado nesse trabalho é validado utilizando escoamento totalmente desenvolvido entre duas placas paralelas.References
[1] G. K. Batchelor. “An Introduction to Fluid Dynamics”. Cambridge Univ. Press, 1967.
R. B. Bird, R. C. Armstrong, e O. Hassager. “Dynamics of Polymeric Liquids”. John Wiley & Sons, 1987.
M. J. Crochet e R. Keunings. Finite element analysis of die-swell of a highly elastic fluid. Journal of Non-Newtonian Fluid Mechanics, 10 (1982), 339-356.
M. J. Crochet e K. Walters. Numerical simulation of non-newtonian flow. Elsevier, 1984.
J. L. Doricio. “GENSMAC-SOF: Um Método Numérico para Simular Escoamentos Incompressíveis de Fluidos de Segunda Ordem”, Dissertação de Mestrado, ICMC, USP, São Carlos, SP, 2003.
V. G. Ferreira, M. F. Tomé, N. Mangiavacchi, N. Castelo e J. A. Cuminato. High order upwinding and the hydraulic jump. International Journal of Numerical Methods in Fluids, 39 (2002), 549-583.
M. Gabriel, T. Dornseifer e T. Neunhoeffer. Numerical simulation in fluid dynamics: a practical experiments. Society of Industrial and Applied Mathematics, 1998.
L. Gast e W. Ellingson. Die swell measurements of second-order fluids: Numerical experiments. International Journal for Numerical Methods in Fluids, 29 (1999), 1-18.
F. H. Harlow e J. E. Welsh. Numerical calcularion of a time dependent viscous incompressible flow. Phys. Fluids, 8 (1965), 2182-2189.
Y. Liang, A. ¨ Ozetkin e S. Neti. Dynamics of viscoelastic jets of polymeric liquid extrudate. Journal of Non-Newtonian Fluid Mechanics, 81 (1999), 105-132.
E. Mitsoulis. Three-dimensional non-newtonian computations of extrudate swell with the finite element method. Comput. Methods Appl. Mech. Engrg., 180 (1999), 333-344.
J. Oliveira e A. Castelo Filho. Um sistema de simulação de fluidos com superf ícies livres bidimensionais, em “Seleta do XXII CNMAC”(J.M. Balthazar, S.M. Gomes e A. Sri Ranga, eds.). Tendências em Matemática Aplicada e Computacional, vol. 1, pp. 179-192, SBMAC, 2000.
M. E. Ryan e A. Dutta. A finite difference simulation of extrudate swell. Proc. 2nd. World Congr. Chem. Eng., VI:277-281, 1981.
W. Shyy. “Computational Techniques for Complex Transport Phenomena”, Cambridge University Press, 1997.
M. F. Tomé, B. Duffy e S. McKee. A numerical method for solving unsteady non-newtonian free surface flows. Journal of Non-Newtonian Fluid Mechanics, 62 (1996), 9-34.
M. F. Tomé e S. McKee. GENSMAC: A computational marker-and-cell method for free surface. Journal of Computational Physics, 110 (1994), 171-189.
A. Varonos e G. Bergeles. Development and assessment of a variable-order nonoscillatory scheme for convection term discretization. International Journal for Numerical Methods in Fluids, 26 (1998), 1-16.
J. Yoo e Y. Na. A numerical study of the planar contraction flow of a viscoelastic fluid using the simpler algorithm. Journal of Non-Newtonian Fluid Mechanics, 30 (1991), 89-106.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.