T-Normas, T-Conormas, Complementos e Implicações Intervalares
DOI:
https://doi.org/10.5540/tema.2006.07.01.0139Abstract
A lógica fuzzy modela matematicamente a imprecisão da linguagem natural, utilizando graus de pertinências (valores entre 0 e 1), contudo, nem sempre é simples especificar com precisão esses graus de pertinências. Existem infinitas formas de generalizar o comportamento dos conectivos lógicos clássicos (álgebra booleana) para valores no conjunto [0, 1]. As t-normas, t-conormas, implicações e complementos são operações sobre [0, 1] satisfazendo certas propriedades que generalizam os conectivos lógicos de conjunção, disjunção, implicação e negação, respectivamente, de forma a preservar algumas das propriedades da lógica clássica desses conectivos. Este trabalho consiste em introduzir uma generalização de t-norma, t-conorma, implicação e complemento, para o conjunto I = {[a, b] : 0 a b 1}, chamados de t-norma intervalar, t-conorma intervalar, implicação intervalar e complemento intervalar, de tal modo que, formas canônicas de se obter t-conorma intervalar, implicação intervalar e complemento intervalar a partir de uma t-norma intervalar sejam preservados.References
[1] M.S. Aguiar, A.C.R. Costa e G.P. Dimuro, ICTM: An interval tessellationbased model for reliable topographic segmentation. Numerical Algorithms, 36 (2004), 1-10.
M. Baczynski, Residual implications revisited. notes on the Smets-Magrez. Fuzzy Sets and Systems, 145, No. 2 (2004), 267-277.
L.V. Barboza, G.P. Dimuro e R.H.S. Reiser, Power flow with load uncertainty. TEMA - Tendências em Matemática Aplicada e Computacional, 5 (2004), 27-36.
G. Bojadziev e M. Bojadziev, “Fuzzy Sets, Fuzzy Logic, Applications”, volume 5. World Scientific, 1995.
H. Bustince, P. Burilo e F. Soria, Automorphism, negations and implication operators. Fuzzy Sets and Systems, 134 (2003), 209-229.
D. Dubois e H. Prade, Random sets and fuzzy interval analysis. Fuzzy Sets and Systems, 42 (1991), 87-101.
J.C. Fodor, On fuzzy implication operators. Fuzzy Sets and Systems, 42 (1991), 293-300.
M. Gehrke, C. Walker e E. Walker, Algebraic aspects of fuzzy sets and fuzzy logic. Proceedings of Workshop on Current Trends and Develoments in Fuzzy Logic, pp. 101-170, 1999.
R. Horcik e M. Navara, Validation sets in fuzzy logics. Kybernetika, 38 No. 3 (2002), 319-326.
L.J. Kohout e E. Kim, Characterization ofinterval fuzzy logic systems of connectives by group transformation. Reliable Computing, 10 (2004), 299-334.
V. Kreinovich e M. Mukaidono, Interval (pairs of fuzzy values), triples, etc.: Can we thus get an arbitrary ordering? Proceedings of the 9th IEEE International Conference on Fuzzy Systems. San Antonio, Texas, 1 (2000), 234-238.
U.B. Kulisch e W.L. Miranker, “Computer Arithmetic Theory and Pratice”, Academic Press, San Diego, 1981.
J.M. Leski, Insensitive learning techniques for approximate reasoning system. Int. J. Computational Cognition, 1, No. 1 (2003), 21-77.
A. Lyra, B.R.C. Bedregal, R. Callejas-Bedregal e A.D. Doria Neto, The interval digital images processing. WSEAS Transactions on Circuits and Systems, 3, No. 2 (2004), 229-233.
R.J. Marks-II, “Fuzzy logic technology and applications”, chapter Preface by L.A. Zadeh. IEEE Technical Activities Board, 1994.
K. Menger, Statistical metrics. Proc. Nat. Acad., pp. 535-537, 1942.
R.E. Moore, Methods and Applications of Interval Arithmetic. PhD thesis, Studies in Applied Mathematics - SIAM, 1979.
B. Schweizer e A. Sklar, Associative functions and statistical triangle inequalities. Publicationes Mathematicae Debrecen, pp. 168-186, 1961.
M.M.M.T. Silveira e B.R.C. Bedregal, A method of inference and defuzzyfication fuzzy interval. Proceeding of the IASTED International Conference on Artificial Intelligence e Applications, pp. 242-247, 2001.
L.H. Tsoukalas e R.E. Uhrig, Fuzzy e Neural Approaches in Engineering. Wiley Interscience, 1997.
I.B. Turksen, Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems, 20 (1986), 191-210.
L.A. Zadeh, Fuzzy sets. Proc. Nat. Acad., pp. 535-537, 1942.
Q. Zuo, Description of strictly monotonic interval AND/OR operations. APIC’S Proceedings: International Workshop on Applications of Interval Computations, pp. 232-235, 1995.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.