Linear Codes over Finite Rings

Authors

  • A.A. de Andrade
  • R. Palazzo Jr.

DOI:

https://doi.org/10.5540/tema.2005.06.02.0207

Abstract

In this paper we present a construction technique of cyclic, BCH, alternat, Goppa and Srivastava codes over a local finite commutative rings with identity.

References

[1] A.A. Andrade and R. Palazzo Jr., Códigos de bloco lineares sobre anéis comutativos finitos com identidade, Rev. Mat. Estat., 16 (1998), 161-172.

A.A. Andrade and M.G.C. Andrade, A note on principal ideal rings, Rev. Mat. Estat., 18 (2000), 207-212.

A.A. Andrade and R. Palazzo Jr., Construction and decoding of BCH codes over finite commutative rings, Linear Algebra Applic., 286 (1999), 69-85.

A.A. Andrade and R. Palazzo Jr., A note on units of a local finite rings, Rev. de Mat. Estat., 18 (2000), 213-222.

A.A. Andrade, J.C. Interlando and R. Palazzo Jr., Alternant and BCH code over certain rings, Computational and Applied Mathematics, 22, No. 2 (2003), 233-247.

A.R. Calderbank and N.J.A. Sloane, Modular and p-adic cyclic codes, Des., Codes Cryptogr., 6 (1995), 21-35.

V.D. Goppa, A new class of linear error-correcting codes, Probl. Peredach. In- form., 6, No. 3 (1970), 24-30.

Published

2005-06-01

How to Cite

de Andrade, A., & Palazzo Jr., R. (2005). Linear Codes over Finite Rings. Trends in Computational and Applied Mathematics, 6(2), 207–217. https://doi.org/10.5540/tema.2005.06.02.0207

Issue

Section

Original Article