Sinais e Sistemas Definidos sobre Aritmética Intervalar Complexa
DOI:
https://doi.org/10.5540/tema.2012.013.01.0085Abstract
Neste trabalho é feita a fundamentação para os conceitos de sinais e sistemas intervalares complexos, fazendo-se o uso da aritmética complexa retangular e do conceito de intervalo de números complexos feito com auxílio da chamada ordem de Kulisch-Miranker para complexos. É apresentado também o conceito de representação intervalar e é definida a representação canônica intervalar (CIR) de funções complexas. A partir de um sistema complexo $f$, usando a função CIR, encontra-se um sistema intervalar $F$ o qual preserva, no ambiente intervalar, as propriedades de $f$, tais como estabilidade, invariância no tempo, aditividadade, homogeinidade e linearidade.References
G. Alefeld, J. Herzberger, “Introduction to Interval Computations”, Academic Press, New York, 1983.
M. Buslowicz, T. Kaczorek, Robust stability of positive discrete-time interval systems with time-delays. Bulletin of the Polish Academy of Sciences, Technical Sciences, 52, No. 2 (2004).
M.M.C. Cruz, R.H.N. Santiago, A.D. Dória Neto, Mathematical morphology for two valued gray-scale images with undefined information, In: “Proceedings of the 8th International Symposium on Mathematical Morphology”, 2008, Rio de Janeiro, RJ, 1 (2008), 1–6.
W. Edmonson, W.H. Lee, J.M.M. Anderson, Interval methods for sinusoidal parameter estimation: A comparative analysis, Reliable Computing, 6 (2000), 321–336.
W. Edmonson, R. Gupte, S. Ocloo, J. Gianchandani, W. Alexander, Interval Arithmetic Logic Unit for Signal Processing and Control Applications. In: Proceedings of the NSF Workshop on Reliable Engineering Computing: Modeling Errors and Uncertainty in Engineering Computations, (R.L. Muhanna, R.L. Mullen, eds.), Savannah, Georgia, 189–196, 2006.
S. Haykin, B.V. Veen, “Sinais e Sistemas”, Porto Alegre, RS, Bookman, 2001.
T.J. Hickey, Qun Ju, M.H. van Emden, Interval arithmetic: from principles to implementation, Journal of the ACM, 48 (2001), 1038–1068.
U. Kulisch, W. Miranker, “Computer Arithmetic in Theory and Practice”, New York, Academic Press, 1981.
B.P. Lathi. “Sinais e Sistemas Lineares”, 2.ed., Porto Alegre, RS, Bookman, 2007.
A. Lyra, B.R.C. Bedregal, R.C. Bedregal, A.D. Dória Neto, The interval digital images processing, WSEAS Transactions on Circuits, 3 234–240, 2004.
S. Markov, On direct interval arithmetic and its applications. J. Universal Computer Science, 1, No.7 (1995), 514–526.
R.E. Moore, “Interval Analysis”, Prentice Hall, New Jersey, 1966.
R.E. Moore, “Methods and Applications of Interval Analysis”, Studies in Applied Mathematics-SIAM, Philadelphia, 1979.
M. Mukaidomo, “Fuzzy Logic for Beginners”, World Scientific, 2004.
A.V. Oppenheim, R.W. Schafer, “Discrete Time Signal Processing”, Prentice Hall, 1989.
M. Petković, L. Petković, “Complex Intervalar Arithmetic and its Applications”, Mathematical Research, Vol. 105, 1.ed., Berlin, Wiley-Vch, 1998.
J. Rokne; P. Lancaster, “Complex Interval Arithmetic”, Numerical Mathematics. (W.P. Timlac, ed.), 1970.
F.T. Santana, R.H.N. Santiago, A.D. Dória Neto, Fundamentação intervalar complexa para sinais e sistemas. In: XXXIII Congresso Nacional de Matemática Aplicada e Computacional, 2010, Águas de Lindóia. Anais do XXXIII Congresso Nacional da Sociedade Brasileira de Matemática Aplicada e Computacional. São Carlos: SBMAC, 3 (2009), 1–7.
F.T. Santana, F.L. Santana, A.M.G. Guerreiro, A.D. Dória Neto, R.H.N. Santiago. A framework for interval quantization and application to interval based algorithms in digital signal processing, Fundamenta Informaticae, 112 (2011), 337–363.
R.H.N. Santiago, B.R.C. Bedregal, B.M. Acióly, Formal aspects of correctness and optimality of interval computations, Formal Aspects of Computing, 18 (2006), 231–243.
R.M.P. Trindade, B.R.C. Bedregal, A.D. Dória Neto, Princípios de processamento digital de sinais intervalares, TEMA - Tendências em Matemática Aplicada e Computacional, 10 (2009), 87–97.
R.M.P. Trindade, R.R. . Bedregal, A.D. Dória Neto, Basic concepts of intervalar digital signal processing, International Journal of Electrical, Computer, and Systems Engineering, 4 (2010), 135–139.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.