Produtos de Grafos Z_m-bem-cobertos
DOI:
https://doi.org/10.5540/tema.2012.013.01.0075Abstract
Um grafo é $Z_m$-bem-coberto se $|I| \equiv |J|$ (mod m), $m\geq 2,$ para todo $I$, $J$ conjuntos independentes maximais em $V(G)$. Um grafo $G$ é fortemente $Z_m$-bem-coberto se $G$ é um grafo $Z_m$-bem-coberto e $G\backslash \{e\}$ é $Z_m$-bem-coberto, $\forall e \in E(G)$. Um grafo $G$ é $1$-$Z_m$-bem-coberto se $G$ é $Z_m$-bem-coberto e $G\backslash \{v\}$ é $Z_m$-bem-coberto, $\forall v \in V(G)$. Mostramos que os grafos $1$-$Z_m$-bem-cobertos, bem como os fortemente $Z_m$-bem-cobertos, com exceção de $K_1$ e $K_2$, têm cintura $ \leq 5$. Mostramos uma condição necessária e suficiente para que produtos lexicográficos de grafos sejam $Z_m$-bem-cobertos e algumas propriedades para o produto cartesiano de ciclos.References
M. Asté, F. Havet, C.L. Sales, Grundy number and products of graphs, Discrete Mathematics, 310 (2010), 1482–1490.
R.M. Barbosa, On 1-Zm-well-covered graphs and strongly Zm-well-covered graphs, Ars Combinatoria, 57 (2000), 225–232.
R.M. Barbosa, “Sobre Conjuntos Independentes Maximais em Grafos”, Tese de Doutorado, COPPE-UFRJ, 1999.
R.M. Barbosa, M.N. Ellingham, A characterisation of cubic parity graphs, Australasian Journal of Combinatorics, 28 (2003), 273–293.
R.M. Barbosa, B. Hartnell, Almost parity graphs and claw-free parity graphs, J. Combin. Math. Combin. Comput., 27 (1998), 117–122.
R.M. Barbosa, B. Hartnell, Characterization of Zm-well-covered graphs for some classes of graphs, Discrete Mathematics, 233 (2001), 293–297.
J.A. Bondy, U.S.R. Murty, “Graph Theory”, Graduate Texts in Mathematics, Springer, 2008.
Y. Caro, Subdivisions, parity and well-covered graphs, J. Graph Theory, 25 (1997), 85–94.
Y. Caro, M. Ellingham, J. Ramey, Local structure when all maximal independent sets have equal weight, SIAM J. Discrete Mathematics, 11 (1998), 644–654.
Y. Caro, B. Hartnell, A Characterization of Zm-well-covered graphs of girth 6 or more, J. Graph Theory, 33 (2000), 246–255.
A.O. Fradkin, On the well-coveredness of Cartesian products of graphs, Discrete Mathematics, 309 (2009), 238–246.
R. Hammack, W. Imrich, S. Klavzar “Handbook of Product Graphs”, Second Edition, CRC Press, 2011.
B. Hartnell, Well-covered graphs, J. Combin. Math. Combin. Comput., 29 (1999), 107–115.
R.M. Karp, Reducibility among combinatorial problems, em “Complexity of Computer Computations” (Yorktown Heights), pp. 85-104, Nova York, 1972.
R.J. Nowakowski, K. Seyffarth, Small cycle double covers of products I: Lexicographic product with paths and cycles, J. Graph Theory, 57 (2008), 99–123.
M.R. Pinter, Strongly well-covered graphs, Discrete Mathematics, 132 (1994), 231–246.
J. Topp, L. Volkmann, On the well coveredness of Products of Graphs, Ars Combinatoria, 33 (1992), 199–215.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.