Fórmula Explícita e Interpretação Combinatória para os Números de Fibonacci
DOI:
https://doi.org/10.5540/tema.2004.05.02.0205Abstract
Neste trabalho, damos uma nova interpretação combinatória para os números de Fibonacci em termos de partições restritas, fazendo uso do Símbolo de Frobenius. Também damos uma demonstração de uma conjectura para uma fórmula explícita de uma família de polinômios dada por Santos em [9].References
[1] G.E. Andrews, q-Series: Their development and application in analysis, number theory, combinatorics, physics an computer algebra, “CBMS Regional Conference Series in Math.”, American Mathematical Society, Providence Rhode Island, Number 66, pp 87-93, 1986.
G.E. Andrews e R.J. Baxter, Lattice gas generalization of the hard hexagon model. III q-trinomio coeficientes, J. Stat. Phys., 47 (1987) 297-330.
G.E. Andrews. Generalized partitions, Mem. Amer.Math. Soc., 301 (1984) 1-44.
G.E. Andrews, “The theory of partitions”, Encyclopedia of Mathematics and its Applications, Vol.2, Cambridge University Press, London and New York, 1985.
G.E. Andrews, Combinatorics and Ramanujan’s “lost” notebook, “London Mathematical Society Lecture Notes Series”, Cambridge University Press, London, Number 103, pp 1-23, 1985.
G.E. Andrews, “Number Theory”, Dover Publications, New York, 1994.
P. Mondek, “Identidades de Slater: Novas identidades e interpretações combinat órias,” Tese de Doutorado, IMECC-UNICAMP, 1997.
J.P.O. Santos. On the combinatorics of polynomial generalizations of Rogers-Ramanujan type identities, Discrete Mathematics, 254 (2002) 497-511.
J.P.O. Santos, “Computer algebra and identities of the Rogers-Ramanujan type”, Ph.D. Thesis, Pennsylvania State University, 1991.
L.J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2), 54 (1952) 147-167.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.