Equação de Burgers em um Domínio Arbitrário
DOI:
https://doi.org/10.5540/tema.2002.03.01.0101Abstract
Neste trabalho provamos a existência e unicidade de soluções fracas para a equação vetorial de Burgers em domínios arbitrários em três dimensões. A única hipotese considerada sobre o domínio é que este seja um aberto. As estimativas para estes resultados utilizam uma desigualdade de Sobolev do tipo elíptica apresentada nos preliminares.References
[1] R. Adams, Sobolev Spaces", Academic Press, New York, 1975.
H. Brezis, Analyse Fonctionnelle", 2a Tiragem, Masson S. A., 1987.
J.M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Math., 1 (1948), 171-199.
E.A. Coddington e N. Levinson, Theory of Ordinary Dierential Equations", McGraw Hill, 1955.
L.C. Evans, Partial Dierential Equations", Berkeley Mathematics Lectures Notes, V. 3A, Berkeley, Ca, 1993.
J.B. Heywood e W. Xie, Smoth solution of the vector Burgers equation in nonsmooth domains, Dierential and Integral Equations, 10, No. 5 (1997), 961-974.
J.B. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana University Mathematics Journal, 29, No. 5 (1980), 639-681.
L.A. Medeiros e E.A. Milla, A Integral de Lebesgue { Texto Didático", Série Matemática / 1, Editora Universitária, 1989.
R. Temam, Navier-Stokes Equations - Theory and Numerical Analysis", North-Holland Publishing Company, Amsterdam-New York-Oxford, 1979.
W. Xie, A sharp pointlibie bound for functions with L2 laplacions and zero boundary values on arbitrary three-dimensional domains, Indiana University Mathematics Journal, 40 (1991), 1185-1192.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.