Recombination and Genetic Diversity
DOI:
https://doi.org/10.5540/tema.2013.013.03.0265Abstract
In this paper we present a spatial stochastic model for genetic recombination, that answers if diversity is preserved in an infinite population of recombinating individuals distributed spatially. We show that, for finite times, recombination may maintain all the various potential different types, but when time grows infinitely, the diversity of individuals extinguishes off. So under the model premisses, recombination and spatial localization alone are not enough to explain diversity in a population. Further we discuss an application of the model to a controversy regarding the diversity of "Major Histocompatibility Complex" (MHC).
References
A. K. Abbas, A. H. Lichtman, "Imunologia Celular e Molecular'', 3a. ed., Elsevier, Rio de Janeiro, 2009.
R. Bürger, "The mathematical theory of selection, recombination, and mutation'', John Wiley & Sons, Chichester, 2000.
P. Clifford, A. Sudbury, "A model for spatial conflict", Biometrika Trust, 60 (1973), 581--588.
R. Coico, G. Sunshine, "Immunology: a short course", 6a. ed., John Wiley & Sons-Blackwell, New Jersey, 2009.
Thamara C. Coutinho, Telles T. Da Silva, MHC, Recombinação e Diversidade Genética, Congresso de Matemática Aplicada e Computacional - Sudeste, Uberlândia, 2011.
W. Ewens, G. R. GRANT, "Statistical Methods in Bioinformatics: an introduction", 2a. ed.,Springer, New York, 2005.
P. Ferrari, A. Galves, "Acoplamento e processos estocásticos", IMPA, Rio de Janeiro, 1997.
O. Kallenberg, "Foundations of Modern Probability'', 2nd ed., Springer, Berlin, 2002.
P. S. C. Magalhães, M. Böhlke, F. Neubarth, Complexo Principal de Histocompatibilidade (MHC): codificação genética, bases estruturais e implicações clínicas, Rev. Med. UCPEL (Pelotas), 2 (2004), 54--59.
A. M. Miranda Vilela, "A diversidade genética do complexo principal de histocompatibilidade (MHC) e sua relação com a susceptibilidade para doenças auto-imunes e câncer." SBG, Ribeirão Preto, 2007.
H. Schaschl et al., Selection and recombination drive the evolution of MHC class II DRB diversity in ungulates, Heredity, 97 (2006), 427--437.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.