A distribuição Gama Weibull Poisson aplicada a dados de sobrevivência
DOI:
https://doi.org/10.5540/tema.2014.015.02.0165Abstract
A família de distribuições univariadas gama-generalizada proposta por Zografos e Balakrishnan e Ristic e Balakrishnan foi discutida por Nadarajahet al. que deram um tratamento matemático amplo a esta classe. Neste artigo, estudamos o modelo Gama Weibull Poisson que tem como casos especiais váriasdistribuições discutidas na literatura. Deduzimos uma expressão explícita para aentropia de Rényi, e mostramos que a densidade da distribuição Gama WeibullPoisson é uma mistura de densidades da distribuição Weibull Poisson. Estudamosalgumas propriedades matemáticas importantes como momentos, função geratrizde momentos e função quantílica.References
A. Morais e W. Barrato-Souza, A compound class of Weibull and power series
distribution, Comput. Statist. Data Anal., 55 (2011), 14101425.
K. Zografos e N. Balakrishnan, On families of beta and generalized gammagenerated
distributions and associated inference, Statistical Methodology, 6
(2009) 344362.
M. Ristic e N. Balakrishnan, The gamma exponentiated exponential distribution,
Journal of Statistical Computation an Simulation, 82 (2012) 11911206.
S. Nadarajah, G.M. Cordeiro e E.M. Ortega, The gamma-G family of distributions:
Mathematical properties and applications, Submetido.
W. Lu e D. Shi, A new compounding life distribution: the Weibull-Poisson
distribution, J. of Appl. Statist., 39 (2012), 2138.
W. Weibull, A statistical theory of the strenght of material, Ingeniors Vetens-
kapa Acadamiens Handligar, 151 (1939), 145.
W. Weibull, A statistical distribution function of wide applicability, Journal of
Applied Mechanics, 18 (1951), 293296.
W. Weibull, References on Weibull Distribution, Stockholm: FTL A Report,
Forsvarets Teletekniska Laboratorium, (1977), 293296.
W. Alven, Reliability Engineering by ARINC, Prentice-Hall, Inc., Englewood
Clis, New Jersey, 1964.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.