A distribuição Gama Weibull Poisson aplicada a dados de sobrevivência
DOI:
https://doi.org/10.5540/tema.2014.015.02.0165Abstract
A família de distribuições univariadas gama-generalizada proposta por Zografos e Balakrishnan e Ristic e Balakrishnan foi discutida por Nadarajahet al. que deram um tratamento matemático amplo a esta classe. Neste artigo, estudamos o modelo Gama Weibull Poisson que tem como casos especiais váriasdistribuições discutidas na literatura. Deduzimos uma expressão explícita para aentropia de Rényi, e mostramos que a densidade da distribuição Gama WeibullPoisson é uma mistura de densidades da distribuição Weibull Poisson. Estudamosalgumas propriedades matemáticas importantes como momentos, função geratrizde momentos e função quantílica.References
A. Morais e W. Barrato-Souza, A compound class of Weibull and power series
distribution, Comput. Statist. Data Anal., 55 (2011), 14101425.
K. Zografos e N. Balakrishnan, On families of beta and generalized gammagenerated
distributions and associated inference, Statistical Methodology, 6
(2009) 344362.
M. Ristic e N. Balakrishnan, The gamma exponentiated exponential distribution,
Journal of Statistical Computation an Simulation, 82 (2012) 11911206.
S. Nadarajah, G.M. Cordeiro e E.M. Ortega, The gamma-G family of distributions:
Mathematical properties and applications, Submetido.
W. Lu e D. Shi, A new compounding life distribution: the Weibull-Poisson
distribution, J. of Appl. Statist., 39 (2012), 2138.
W. Weibull, A statistical theory of the strenght of material, Ingeniors Vetens-
kapa Acadamiens Handligar, 151 (1939), 145.
W. Weibull, A statistical distribution function of wide applicability, Journal of
Applied Mechanics, 18 (1951), 293296.
W. Weibull, References on Weibull Distribution, Stockholm: FTL A Report,
Forsvarets Teletekniska Laboratorium, (1977), 293296.
W. Alven, Reliability Engineering by ARINC, Prentice-Hall, Inc., Englewood
Clis, New Jersey, 1964.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
Authors retain copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License that allows the sharing of the work with acknowledgment of authorship and initial publication in this journal.
Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
Authors are allowed and encouraged to publish and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can generate productive changes as well as increase impact and the citation of the published work (See The effect of open access).
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the
author. This is in accordance with the BOAI definition of open access
Intellectual Property
All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License under attribution BY.