Multi-fractal Analysis for Riemann Serie and Mandelbrot Binomial Measure with (min,+)-Wavelets.
DOI:
https://doi.org/10.5540/tema.2016.017.02.0247Keywords:
(min, )-wavelets, fractal and multi-fractal analysis, Hölder exponent, scaling function, singularities spectrumAbstract
One introduces first the so-called (min, +)-wavelets which are lower and upper hulls build from (min, +) analysis in order to perform multi-fractal analysis. In a second step it is applied to functions such as the Riemann serie and binomial Mandelbrot measure for numerical computations of their singularities spectrum, and comparisons with well-known theoretical and to WTMM method results.
References
A. Arneodo, F. Argoul, E. Bacry, J. Elezgaray & J.-F. Muzy. Ondelettes, multifractales et turbulence. Diderot, Paris, (1995).
H.D.I. Abarbanel, R. Brown, J.J. Sidorowich & L.Sh. Tsmiring. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys., 65(4) (1993), 1331–1392.
M.V. Altaisky, L.P. Chernenko, V.M. Balebanov, N.S. Erokhin & S.S. Moiseev. Multifractal analysis of AFM images of Nb thin film surfaces. Particles and Nuclei Letters, 2(99) (2000), 14–26.
A. Arneodo, G. Grasseau & M. Holschneider. Wavelet transform of multifractals. Phys. Rev. Lett., (1988), 2281–2284.
M.V. Altaisky, V.V. Ivanov, S.A. Korenev, O.L. Orelovich, I.V. Puzynin & V.V. Chernik. Fractal structure formation on the surfaces of solids subjected to high intensity electron and ion treatment. JINR Rapid Communications, 82 (1997), 37–46.
M. V. Altaisky. Wavelets, Theory, Applications and Implementation. Universities Press, (2005).
A. Aldroubi & M. Unser. Families of multiresolution and wavelet spaces with optimal properties. Num. Func. Anal. Optim., 14 (1993), 417–446.
A. Aldroubi & M. Unser. Wavelets in biology and medicine. CRC Press, (1999).
L.F. Abbott & M.B. Wise. Dimension of quantum-mechanical path. Am. J. Phys., 49 (1981), 37–39.
R. Benzi, G. Paladin, G. Parizi & A. Vulpiani. On multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A, 17 (1984), 3521–3531.
S. Dahlke, W. Dahmen & I. Weinreich. Multiresolution analysis and wavelets on s2 and s3. Numer. Funct. Anal. and Optimiz., 16 (1995), 19–41.
J. Feder. Fractals. Plenum Press, (1988).
U. Frish, M. Nelkin & P. L. Sulem. A simple dynamical model of intermittent fully developed turbulence. J. Fluid. Mech., 87 (1978), 719–736.
Y. Gagne. Etudes expérimentales de l’intermittence et des singularités dans le plan complexe et turbulence développée. Thèse de l’Université de Grenoble, (1987).
M. Gondran. Analyse minplus. C. R. Acad. Sci. Paris, 323(323) (1996), 371–375.
M. Gondran. Convergences de fonctions à valeurs dans Rk et analyse minplus complexe. C. R. Acad. Sci. Paris, 329 (1999), 783–788.
T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia & B.I. Shraiman. Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A., 33(2) (1986), 1141–1151.
B.R. Hunt. The hausdorff dimension of graphs of weierstrass functions. Proceedings of the American Mathematical Society, 126 (1998), 791–800.
L.P. Kadanoff. Scaling and Multiscaling: Fractals and Multifractals. Number 29. Chinese Journal of Physics, (1991).
A. Kenoufi. PhD Thesis: “Density functional Theory and Renormalisation Group”. University of Strasbourg, (2004).
A.N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Number 30. Dokl. Akad. Nauk, SSSR, (1941).
A.N. Kolmogorov. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. Number 13. JFM, (1962).
L. Chevillard, B. Castaing, A. Arneodo, E. Lévêque, J.-F. Pinton & S.G. Roux. A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows. Comptes Rendus Physique, 13(9) (2012), 899–928.
P.C. Martin & L.P. Kadanoff. Hydrodynamic Equations and Correlation Functions. Number 24. Ann. Phys., (1963).
S. Mallat. A theory for multiresolution signal decomposition: wavelet transform. Preprint GRASP Lab. Dept. of Computer an Information Science, Univ. of Pensilvania, (1986).
B. Mandelbrot. The fractal geometry of Nature. Freeman, San Francisco, (1982).
B. Mandelbrot. Fractals and Multifractals: Noise, Turbulence and non-fractal Patterns in Physics. Nijhof, Dordrecht, (1986).
J.F. Muzy, E. Bacry & A. Arneodo. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett., 67 (1991), 3515–3518.
J.F. Muzy, E. Bacry & A. Arneodo. Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. Phys. Rev. E, 47 (1993), 875–884.
J.F. Muzy, E. Bacry & A. Arneodo. Singularity spectrum of fractal signals: Exact results. J. Stat. Phys., 70(3/4) (1993), 635–674.
M. Minoux & M. Gondran. Graphs, Dioids and Semirings. Springer, (2008).
A. Kenoufi & M. Gondran. Numerical calculations of Holder exponents for the Weierstrass functions with (min,+)-wavelets. Number 3. Tend. Mat. Apl. Comput., 15 (2014).
C. Meneveau & K.R. Sreenivasan. Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett., 59 (1987), 1424–1427.
N.T. Ouelette, R. Friedrich, M. Wilczek, H. Xu & E. Bodenschatz. Generation of Lagrangian inter- mittency in turbulence by a self similar mechanism. Number 15. New Journal of Physics, (2013).
A.M. Oboukhov. Some specific features of atmospheric turbulence. Number 13. JFM, (1962).
E.E. Peters. Chaos and order in Capital Markets. John Wiley & Sons Inc., (1991).
G. Parisi & U. Frish. On the singularity structure of fully developed turbulence. In M. Chil, R. Benzi, and G. Parisi, editors, Turbulence and predictability in geophysical fluid dynamics, Proc. Int. School of Physics ’E.Fermi’, pages 84–87, Varenna, Italy, 1985. North-Holland, Amsterdam.
B. Torrésani. Analyse continue par ondelettes. Interéditions/Editions du CNRS, (1995).
C. Tricot. Courbes et dimension fractale. Springer-Verlag, (1993).
G. Parisi & U. Frisch. Fully developed turbulence and intermittency. Proc. Internat. Summer School Phys. Enrico Fermi, pages 84–88, (1985).
R.F. Voss. Random fractals: characterization and measurement. In Scaling Phenomena in Disordered Systems, volume 133 of NATO Advanced Study Institute series B. Plenum Press, New York, (1985).
O.V. Vasilyev, S. Paolucci & M. Sen. A multilevel wavelet collocation method for solving partial differential equations in a finite domain. J. Comp. Phys., 120 (1995), 33–47.
K. Weierstrass. Uber continuirliche funktionen eines reellen arguments, die für keinen werth des letzteren einen bestimmten differentialquotienten besitzen. Karl Weiertrass Mathematische Werke, Abhandlungen II, Gelesen in der Ko ̈nigl. Akademie der Wissenchaften am 18 Juli 1872, (1967).
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.