### Algorithms and Properties for Positive Symmetrizable Matrices

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

M. Barot, C. Geiss, A. Zelevinsky, Cluster algebras of finite type and positive symmetrizable matrices, J. London Math. Soc., 73 (2006), 545--564.

T.H. Cormen, C.E. Leiserson, C. Stein, R.L. Rivest, Introduction to Algorithms, The Mit Press-id, 2nd edition, 2002.

C.J. Colbourn, B.D. McKay, A corretion to Colbourn's paper on the complexity of matrix symmetrizability, Inform. Proc. Letters, 11 (1980), 96--97.

S. Fomin, A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc.}, 15, No. 2 (2002) 2, 497--529 (electronic).

S. Fomin, A. Zelevinsky, Cluster algebras II: finite type classification, Invent. Math., 154 (2003), 63--121.

E.L. Lima, Álgebra Linear, Associação Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Coleção Matemática Universitária, 6th edition, 2003.

Ghorpade, S.R.; Limaye, B.V: Sylvester's Minorant Criterion, Lagrange-Beltrami Identity and Nonnegative Definiteness. Math. Student, Special Centenary, 123--130 (2007).

M. Sipser, Introduction to the Theory of Computation, Thomson, 2nd edition, 2006.

Chen, Wai-Kai: Theory and Design of Broadband Matching Networks, Pergamon Press Ltd., 1976.

DOI: https://doi.org/10.5540/tema.2016.017.02.0187

#### Article Metrics

_{Metrics powered by PLOS ALM}

### Refbacks

- There are currently no refbacks.

**Trends in Computational and Applied Mathematics**

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

Indexed in: