Stability boundary characterization of nonlinear autonomous dynamical systems in the presence of a type-zero saddle-node equilibrium point
DOI:
https://doi.org/10.5540/tema.2010.011.02.0111Abstract
Abstract. Under the assumption that all equilibrium points are hyperbolic, the stability boundary of nonlinear autonomous dynamical systems is characterized as the union of the stable manifolds of equilibrium points on the stability boundary. The existing characterization of the stability boundary is extended in this paper to consider the existence of non-hyperbolic equilibrium points on the stability boundary. In particular, a complete characterization of the stability boundary is presented when the system possesses a type-zero saddle-node equilibrium point on the stability boundary. It is shown that the stability boundary consists of the stable manifolds of all hyperbolic equilibrium points on the stability boundary and of the stable manifold of the type-zero saddle-node equilibrium point.References
[1] L.F.C. Alberto, H. D. Chiang, Uniform Approach for Stability Analysis of Fast Subsystem of Two-Time Scale Nonlinear Systems, Int J Bifurcat Chaos Appl Sci Eng, 17, (2007), 4195–4203.
[2] H.D. Chiang, M. W. Hirsch, F.F. Wu, Stability region of nonlinear autonomous dynamical systems, IEEE Trans. on Automatic Control, 33, No. 1 (1988), 16–27.
[3] H.D. Chiang, F.Wu, P.P. Varaiya, Foundations of the potential energy boundary surface method for power transient stability analysis, IEEE Trans. on Circuits and Systems, 35, No. 6 (1988), 712–728.
[4] H.D. Chiang, L. Fekih-Ahmed, Quasi-stability regions of nonlinear dynamical systems: optimal estimations, IEEE Trans. on Circuits and Systems, 43 , No. 8 (1996), 636–643.
[5] J. Guckenheimer, P. Holmes, “Nonlinear Oscilations,Dynamical Systems and Bifurcations of Vector Fields”, Springer -Verlag, New York, 1983.
[6] V. Guillemin, A. Pollack, “Differential Topology”, Englewood Cliffs, NJ: Prentice-Hall, 1974.
[7] M. W. Hirsch, C.C. Pugh, M. Shub, Invariant manifolds, Bull. Amer. Math. Soc., 76, No. 5 (1970), 1015–1019.
[8] W. Hurewicz, H. Wallman, “Dimension Theory”, Princeton, NJ: Princeton University
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.