Analogia da Regra Composicional de Inferência e Operadores Lineares

Authors

  • A.S. Castilho
  • M.E. Valle

DOI:

https://doi.org/10.5540/tema.2009.010.02.0135

Abstract

Conjuntos nebulosos são usados para descrever conceitos vagos ou incertos. Sistemas de regras nebulosas (SRNs), por sua vez, é uma poderosa ferramenta matemática para modelar fenômenos usando uma linguagem natural. Métodos de inferência, como o método de Mamdani e a regra composicional de inferência (RCI) de Zadeh, são usados para avaliar um SRNs. Nesse artigo introduzimos os conceitos de espaço reticulado e operadores reticulados, que são análogos aos conceitos de espaço vetorial e operadores lineares. Sobretudo, mostramos que existe uma correspondência unívoca entre operadores reticulados e a RCI. Desse resultado concluímos que RCIs descrevem apenas um subconjunto dos métodos de inferência para SBNs.

References

[1] L. Barros, R. Bassanezi, “Tópicos de Lógica Fuzzy e Biomatemática”, Editora do Instituto de Matemática, Estatística e Computação Científica (IMECCUnicamp), Campinas, 2006.

G. Birkhoff, “Lattice Theory”, American Mathematical Society, Providence, 3 ed., 1993.

M. Castanho, L. Barros, A. Yamakami, L. Vendite, Fuzzy expert system: An example in prostate cancer, Applied Mathematics and Computation, 202, No. 1 (2008), 78–85.

A. Castilho, M. Valle, Avaliação da qualidade de um serviço de transimissão de voz sobre ip usando sistemas de regras nebulosas, em “XII Encontro Regional de Matemática Aplicada e Computacional (XII ERMAC)”, Foz do Iguaçu, Brasil, 2008. Disponível em: http://www.uel.br/pessoal/valle.

A. Cherri, D. Junior, I. Silva, Uma abordagem fuzzy para o problema de corte de estoque unidimensional com sobras de material aproveitáveis, em “Anais do XXXIX Simpósio Brasileiro de Pesquisa Operacional”, Fortaleza, Brasil, 2007.

R. Cuninghame-Green, “Minimax Algebra: Lecture Notes in Economics and Mathematical Systems”, vol. 166, Springer-Verlag, New York, 1979.

D. Dubois, H. Prade, “Fuzzy sets and systems: theory and applications”, Academic Press, New York, 1980.

H. Heijmans, “Morphological Image Operators”, Academic Press, New York, 1994.

R. Jafelice, L. Barros, R. Bassanezi, F. Gomide, Fuzzy modeling in symptomatic HIV virus infected population, Bulletin of Mathematical Biology, 66, No.6 (2004), 1597–1620.

R. Jafelice, L. Barros, R. Bassanezi, F. Gomide, Methodology to determine the evolution of asymptomatic HIV population using fuzzy set theory, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 13, No.1 (2005), 39–58.

V. Kaburlasos, G. Ritter (eds.), “Computational Intelligence Based on Lattice Theory”, Springer-Verlag, Heidelberg, Germany, 2007.

G. Klir, B. Yuan, “Fuzzy Sets and Fuzzy Logic: Theory and Applications”, Prentice Hall, Upper Saddle River, NY, 1995.

B. Kosko, “Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence”, Prentice Hall, Englewood Cliffs, NJ, 1992.

E. Kreyszig, “Introductory Functional Analysis with Applications”, John Wiley and Sons, 1989.

S. MacLane, Garrett birkhoff and the survey of modern algebra, Notices of the American Mathematical Society, 44, No. 11 (1997), 1438–1439.

P. Maragos, Lattice image processing: A unification of morphological and fuzzy algebraic systems, Journal of Mathematical Imaging and Vision, 22, No. 2-3 (2005), 333–353.

H. Nguyen, E. Walker, “A First Course in Fuzzy Logic’, Chapman & Hall/CRC, Boca Raton, 2 edition, 2000.

W. Pedrycz, F. Gomide, “Fuzzy Systems Engineering: Toward Human-Centric Computing”, Wiley-IEEE Press, New York, 2007.

G. Ritter, P. Gader, Fixed points of lattice transforms and lattice associative memories, in “Advances in Imaging and Electron Physics”, (P. Hawkes, ed.) vol. 144. Academic Press, New York, 2006.

G. Rota, The many lives of lattice theory, Notices of the American Mathematical Society, 44, No. 11 (1997), 1440–1445.

P. Sussner, M. Valle, Fuzzy associative memories and their relationship to mathematical morphology, in “Handbook of Granular Computing”, (W. Pedrycz, A. Skowron, V. Kreinovich, eds.) pp. 733–754, John Wiley and Sons, Inc., New York, 2008.

M. Valle, “Fundamentos e Aplicações de Memórias Associativas Morfológicas Nebulosas”, PhD thesis, Universidade Estadual de Campinas (UNICAMP), Campinas, Brasil, 2007.

L. Zadeh, Fuzzy sets, Information and Control, 8, No. 3 (1965), 338–353.

L. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man and Cybernetics, SMC-3 No. 1 (1973), 28–44.

L. Zadeh, Is there a need for fuzzy logic? Information Sciences, 178, No. 13 (2008), 2751–2779.

Published

2009-06-01

How to Cite

Castilho, A., & Valle, M. (2009). Analogia da Regra Composicional de Inferência e Operadores Lineares. Trends in Computational and Applied Mathematics, 10(2), 135–144. https://doi.org/10.5540/tema.2009.010.02.0135

Issue

Section

Original Article