Controle Temporal e Adaptabilidade Espacial na Resolução Numérica de uma Equação tipo KdV

Authors

  • F.C.G. Mendonça
  • M.O. Domingues
  • E.E.N. Macau

DOI:

https://doi.org/10.5540/tema.2008.09.02.0265

Abstract

Nas últimas décadas, vários métodos vêm sendo desenvolvidos, utilizando ferramentas wavelet para resolução numérica de equações diferenciais parciais evolutivas com adaptabilidade espacial. Esses métodos, tradicionalmente, utilizam técnicas explícitas para a discretização no tempo. Com o aperfeiçoamento desses métodos espaciais, como por exemplo, os híbridos wavelets-diferenças finitas, há necessidade de enfoques explícitos temporais mais eficientes e estáveis. Com essa finalidade, são avaliados neste trabalho o uso de algumas técnicas de Runge-Kutta Encaixados (RKE) de ordem 4(5), nesse contexto adaptativo wavelet, para a resolução de um problema teste em uma equação tipo Korteweg-de Vries (KdV) com a interação de duas ondas solitárias.

References

[1] K. Baumg¨artel, Soliton approach to magnetic holes, Journal of Geophysical Research, 104, No. A12 (1999), 28295-28308.

D.R. Christie, K.J. Muirhead, A.L. Hales, On solitary waves in the atmosphere, Journal of the Atmospheric Sciences, 35, No. 5 (1978), 805-825.

M.O. Domingues, ”An´aliseWavelet na Simula¸c˜ao Num´erica de Equa¸c˜oes Diferenciais Parciais com Adaptabilidade Espacial”, UNICAMP, 2001.

M.O. Domingues, O. Roussel, K. Schneider, On space-time adaptive schemes for the numerical solution of PDEs, ESIAM Proceedings, 16 (2007), 181-194.

M.O. Domingues, S.M. Gomes, O. Roussel, K. Schneider. An adaptive multiresolution scheme with local time stepping 3 for evolutionary PDEs, Journal of Computational Physics, 227 (2008), 3758-3780.

M. O. Domingues, O. Roussel, K. Schneider. An adaptive multiresolution method for parabolic PDEs with time-step control. International Journal for Numerical Methods in Engineering, 2008 (em publica¸c˜ao).

M. O. Domingues, S. M. Gomes, O. Roussel, K. Schneider. Space-time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations. Applied Numerical Mathematics, 2008(aceito).

E. Fehlberg, “Klassische Runge–Kutta Formeln F¨unfter und Siebenter Ordnung mit Schrittweiten-Kontrolle”, Computing., 4, p.93–106, 1969.

L. Ferm, P. L¨ostedt, Space-time adaptive solutions of first order PDEs, Journal on Scientific Computing, 26, n.1, p.83–110, 2006.

B. Fornberg, A practical guide to pseudoespectral methods, Cambridge University Press, 1996.

E. Hairer, S. P. Norsett, G. Wanner, “Solving Ordinary Differential Equations I - Nonstiff Problems”, Springer-Verlag Berlin Heidelberg, Second Revised Edition, 1993.

M. Holmstr¨om, Solving hyperbolic PDEs using interpolating wavelets, SIAM Journal on Scientific Computing, 21, p.405–420, n.2, 1999.

A. Nunes, M. T. Gama, ”Prisma - `A Luz da F´ısica”, Centro de F´ısica Te´orica e Computacional, 2007.

P. Pinho, M. O. Domingues, P. J. S. G. Ferreira, S. M. Gomes, A. Gomide, J. R. Pereira, Interpolating wavelets and adaptive finite difference schemes for solving maxwell’s equations: gridding effects, IEEE Transactions on Magnetics, 43, p.1–10, 2007.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, “Numerical Recipes in C++ - The Art o Scientific Computing”, Cambridge University Press, Second Edition, 2002.

A. Rees, A. Balogh, T.S. Horbury, Small-scale solitary wave pulses observed by ulisses magnetic field experiment, Journal of Geophysical Research, 11, A10106, doi:10.1029/2005JA011555, 2006.

J. Y. Yang, C. J. Chiou, Wavelet solution of the Korteweg-de Vries equation, Institute of Applied Mechanics - National Taiwan University, p.44.

Published

2008-06-01

How to Cite

Mendonça, F., Domingues, M., & Macau, E. (2008). Controle Temporal e Adaptabilidade Espacial na Resolução Numérica de uma Equação tipo KdV. Trends in Computational and Applied Mathematics, 9(2), 265–274. https://doi.org/10.5540/tema.2008.09.02.0265

Issue

Section

Original Article