Controle Temporal e Adaptabilidade Espacial na Resolução Numérica de uma Equação tipo KdV
DOI:
https://doi.org/10.5540/tema.2008.09.02.0265Resumo
Nas últimas décadas, vários métodos vêm sendo desenvolvidos, utilizando ferramentas wavelet para resolução numérica de equações diferenciais parciais evolutivas com adaptabilidade espacial. Esses métodos, tradicionalmente, utilizam técnicas explícitas para a discretização no tempo. Com o aperfeiçoamento desses métodos espaciais, como por exemplo, os híbridos wavelets-diferenças finitas, há necessidade de enfoques explícitos temporais mais eficientes e estáveis. Com essa finalidade, são avaliados neste trabalho o uso de algumas técnicas de Runge-Kutta Encaixados (RKE) de ordem 4(5), nesse contexto adaptativo wavelet, para a resolução de um problema teste em uma equação tipo Korteweg-de Vries (KdV) com a interação de duas ondas solitárias.Referências
[1] K. Baumg¨artel, Soliton approach to magnetic holes, Journal of Geophysical Research, 104, No. A12 (1999), 28295-28308.
D.R. Christie, K.J. Muirhead, A.L. Hales, On solitary waves in the atmosphere, Journal of the Atmospheric Sciences, 35, No. 5 (1978), 805-825.
M.O. Domingues, ”An´aliseWavelet na Simula¸c˜ao Num´erica de Equa¸c˜oes Diferenciais Parciais com Adaptabilidade Espacial”, UNICAMP, 2001.
M.O. Domingues, O. Roussel, K. Schneider, On space-time adaptive schemes for the numerical solution of PDEs, ESIAM Proceedings, 16 (2007), 181-194.
M.O. Domingues, S.M. Gomes, O. Roussel, K. Schneider. An adaptive multiresolution scheme with local time stepping 3 for evolutionary PDEs, Journal of Computational Physics, 227 (2008), 3758-3780.
M. O. Domingues, O. Roussel, K. Schneider. An adaptive multiresolution method for parabolic PDEs with time-step control. International Journal for Numerical Methods in Engineering, 2008 (em publica¸c˜ao).
M. O. Domingues, S. M. Gomes, O. Roussel, K. Schneider. Space-time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations. Applied Numerical Mathematics, 2008(aceito).
E. Fehlberg, “Klassische Runge–Kutta Formeln F¨unfter und Siebenter Ordnung mit Schrittweiten-Kontrolle”, Computing., 4, p.93–106, 1969.
L. Ferm, P. L¨ostedt, Space-time adaptive solutions of first order PDEs, Journal on Scientific Computing, 26, n.1, p.83–110, 2006.
B. Fornberg, A practical guide to pseudoespectral methods, Cambridge University Press, 1996.
E. Hairer, S. P. Norsett, G. Wanner, “Solving Ordinary Differential Equations I - Nonstiff Problems”, Springer-Verlag Berlin Heidelberg, Second Revised Edition, 1993.
M. Holmstr¨om, Solving hyperbolic PDEs using interpolating wavelets, SIAM Journal on Scientific Computing, 21, p.405–420, n.2, 1999.
A. Nunes, M. T. Gama, ”Prisma - `A Luz da F´ısica”, Centro de F´ısica Te´orica e Computacional, 2007.
P. Pinho, M. O. Domingues, P. J. S. G. Ferreira, S. M. Gomes, A. Gomide, J. R. Pereira, Interpolating wavelets and adaptive finite difference schemes for solving maxwell’s equations: gridding effects, IEEE Transactions on Magnetics, 43, p.1–10, 2007.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, “Numerical Recipes in C++ - The Art o Scientific Computing”, Cambridge University Press, Second Edition, 2002.
A. Rees, A. Balogh, T.S. Horbury, Small-scale solitary wave pulses observed by ulisses magnetic field experiment, Journal of Geophysical Research, 11, A10106, doi:10.1029/2005JA011555, 2006.
J. Y. Yang, C. J. Chiou, Wavelet solution of the Korteweg-de Vries equation, Institute of Applied Mechanics - National Taiwan University, p.44.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.