Attitude Stabilization of the PMM Satellite Using a LQG-Based Control Strategy
DOI:
https://doi.org/10.5540/tema.2008.09.02.0321Abstract
This paper deals with the problem of 3-axis attitude stabilization of a satellite subjected to dynamics perturbations. The controller is based on the Linear Quadratic Gaussian control theory (LQG). The main purpose of the workis to synthesize a control law characterized by simplicity on implementation. The study considers the specific case of the Brazilian satellite PMM. The article presents the system modelling, the proposed control, and analysis of simulation results.References
[1] AEB - Agˆencia Espacial Brasileira, “National Space Activities Program PNAE 1998-2007”, Brazilian Space Agency Report, AEB, Brasilia, 1998.
G. Arantes Jr., A.C. Santana, L.S. Martins-Filho, Dynamics and control of three-axis satellites by thruster actuators using a linear quadratic regulator, in “Proc. of International Congress of Mechanical Science”, Brasilia, pp. 1-9, 2007.
C.A.P. Dorato, V. Cerone, “Linear Quadratic Control: an Introduction”, Prentice Hall, Englewood Cliffs, 1995.
M.H. Kaplan, “Modern Spacecraft Dynamics and Control”, John Wiley and Sons, New York, 1976.
J.M. Maciejowski, “Multivariable Feedback Design”, Addison Wesley Publishing, New York, 1989.
C.E.R. Salles et al., Sistemas propulsivos para satelites: desenvolvimento e Qualifica¸c˜ao,in “Anais do Encontro para a Qualidade de Laborat´orios”, S˜ao Paulo, pp. 1-8, 2005.
L.T.F. Sene, V. Orlando, M.C. Zanardi, “Propaga¸c˜ao da Atitude de Sat´elites Artificiais com Quat´ernions incluindo Torques Magn´eticos e Torque Gradiente de Gravidade”, Technical Report INPE-14020-PRE/9195, INPE, S. Jos´e dos Campos, Brazil, 2006.
L.L. Show, J.C Juang, C.T Lin, Y.W. Jan, Spacecraft robust attitude tracking design: PID control approach, in “Proc. of the American Control Conference”, Anchorage, pp. 1360-1365, 2002.
P. Tsiotras, M. Corless, J.M. Longuski, A nouvel approach to the attitude control of axisymmetric spacecraft, Automatica, 31, No. 8 (1995), 1099-1112.
C.D. Yang, C.C. Kung, Nonlinear H1 flight control of general six degreeof-freedom motions, Journal of Guidance Control and Dynamics, 23, No. 2 (2000), 278-288.
J.R. Wertz (Ed.), “Spacecraft Attitude Determination and Control”, Reidel, Dordrecht, 1978.
H.W.B. Wie, A. Arapostathis, Quaternion Feedback Regulator for Spacecraft Eigenaxis Rotations, Journal of Guidance Control and Dynamics, 12, No. 3 (1989), 375-380.
C.S.Wu, B.S. Chen, Unified design for H2,H1 and mixed control of spacecraft, Journal of Guidance Control and Dynamics, 22, No. 6 (1999), 884-896.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.