Order Stars para os Métodos de Brown (K, 2)
DOI:
https://doi.org/10.5540/tema.2006.07.01.0085Abstract
A ordem, a estabilidade e a convergência de métodos numéricos para equações diferenciais ordinárias podem ser analisadas através de order stars, que são conjuntos que definem uma partição do plano complexo. Nesse trabalho, faremos essa análise para os métodos de Brown (K, 2).References
[1] G. Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations, Math. Scand., 4 (1956), 33-53.
W.H. Enright, Second derivative multistep methods for stiff ordinary differential equations, SIAM J. Num. Anal., 11 (1974), 321-331.
A. Iserles e S.P. Nørsett, A proof of the first Dahlquist barrier by order stars, BIT, 24 (1984), 529-537.
A. Iserles e S.P. Nørsett, “Order Stars”, Chapman and Hall, London, 1991.
M. Meneguette Jr., “Multistep multiderivative methods and related topics”, Tese de Doutorado, Oxford, 1987.
G. Wanner, E. Hairer e S.P. Nørsett, Order stars and stability theorems, BIT, 18 (1978), 475-489.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.