Um Método Unidimensional de Fourier-Gegenbauer para a Resolução da Equação de Helmholtz
DOI:
https://doi.org/10.5540/tema.2004.05.02.0295Abstract
Gottlieb e co-autores propuseram, em [6], um novo método que elimina completamente o fenômeno de Gibbs de expansões em série de Fourier de funções descontínuas, analíticas por partes. O método emprega os coeficientes de Fourier para obter os coeficientes de uma expansão em polinômios de Gegenbauer que representa com acurácia espectral a função dada. Neste trabalho, propomos um método de Fourier-Gegenbauer de resolução numérica de elevada precisão para as equações de Helmholtz unidimensionais. O estudo numérico de casos-teste e compara ções com métodos alternativos propostos na literatura evidencia as vantagens da técnica proposta.References
[1] J.P. Boyd, “Chebyshev and Fourier Spectral Methods”, 2nd. Ed., Dover, New York, 2000.
C. Canuto, M.Y. Hussaini, A. Quarteroni e T.A. Zang, “Spectral Methods in Fluid Dynamics”, Springer-Verlag, 1988.
P.J. Davis, “Interpolation and Approximation”, Dover, 1975.
A. Gelb e D. Gottlieb, The resolution of the Gibbs phenomenon for ”spliced”functions in one and two dimensions, Computers Math. Applic., 33, No. 11 (1997), 35-58.
D. Gottlieb e S.A. Orszag, “Numerical Analysis of Spectral Methods: Theory and Applications”, SIAM-CBMS, 1977.
D. Gottlieb, C.-H. Shu, A. Solomonoff e H. Vandeven, On the Gibbs Phenomenon I: Recovering Exponential Accuracy from the Fourier Partial Sum of a Non-periodic Analytic Function, J. Comput. Appl. Math., 43 (1992), 81-98.
D. Gottlieb e C.-H. Shu, Resolution Properties of the Fourier Method for Discontinuous Waves, Comput. Meth. Appl. Mech. Engin., 116 (1994), 27-37.
D. Gottlieb e C.-H. Shu, On the Gibbs Phenomenon III: Recovering Exponential Accuracy in a Sub-interval from the Spectral Partial Sum of a Piecewise Analytic Function, SIAM J. Numer. Anal., 33 (1996), 280-290.
D. Gottlieb e C.-H. Shu, On the Gibbs Phenomenon IV: Recovering Exponential Accuracy in a Sub-interval from the Gegenbauer Partial Sum of a Piecewise Analytic Function, Math. Comp., 64 (1995), 1081-1095.
D. Gottlieb e C.-H. Shu, On the Gibbs Phenomenon V: Recovering Exponential Accuracy from Collocation Point Values of a Piecewise Analytic Function, Numer. Math., 71 (1995), 511-526.
D. Gottlieb e C.-H. Shu, On the Gibbs Phenomenon and Its Resolution, SIAM Review, 39, No. 4 (1997), 644-668.
L. Vozovoi, M. Israeli e A. Averbuch, Analysis and Application of Fourier-Gegenbauer Method to Stiff Differential Equations, SIAM J. Numer. Anal., 33 (1996), 1844-1863.
L. Vozovoi, A. Weill e M. Israeli, Spectrally Accurate Solution of Non-periodic Differential Equations by the Fourier-Gegenbauer Method, SIAM J. Numer. Anal., 34 (1997), 1451-1471.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.