Um Método Unidimensional de Fourier-Gegenbauer para a Resolução da Equação de Helmholtz
DOI:
https://doi.org/10.5540/tema.2004.05.02.0295Resumo
Gottlieb e co-autores propuseram, em [6], um novo método que elimina completamente o fenômeno de Gibbs de expansões em série de Fourier de funções descontínuas, analíticas por partes. O método emprega os coeficientes de Fourier para obter os coeficientes de uma expansão em polinômios de Gegenbauer que representa com acurácia espectral a função dada. Neste trabalho, propomos um método de Fourier-Gegenbauer de resolução numérica de elevada precisão para as equações de Helmholtz unidimensionais. O estudo numérico de casos-teste e compara ções com métodos alternativos propostos na literatura evidencia as vantagens da técnica proposta.Referências
[1] J.P. Boyd, “Chebyshev and Fourier Spectral Methods”, 2nd. Ed., Dover, New York, 2000.
C. Canuto, M.Y. Hussaini, A. Quarteroni e T.A. Zang, “Spectral Methods in Fluid Dynamics”, Springer-Verlag, 1988.
P.J. Davis, “Interpolation and Approximation”, Dover, 1975.
A. Gelb e D. Gottlieb, The resolution of the Gibbs phenomenon for ”spliced”functions in one and two dimensions, Computers Math. Applic., 33, No. 11 (1997), 35-58.
D. Gottlieb e S.A. Orszag, “Numerical Analysis of Spectral Methods: Theory and Applications”, SIAM-CBMS, 1977.
D. Gottlieb, C.-H. Shu, A. Solomonoff e H. Vandeven, On the Gibbs Phenomenon I: Recovering Exponential Accuracy from the Fourier Partial Sum of a Non-periodic Analytic Function, J. Comput. Appl. Math., 43 (1992), 81-98.
D. Gottlieb e C.-H. Shu, Resolution Properties of the Fourier Method for Discontinuous Waves, Comput. Meth. Appl. Mech. Engin., 116 (1994), 27-37.
D. Gottlieb e C.-H. Shu, On the Gibbs Phenomenon III: Recovering Exponential Accuracy in a Sub-interval from the Spectral Partial Sum of a Piecewise Analytic Function, SIAM J. Numer. Anal., 33 (1996), 280-290.
D. Gottlieb e C.-H. Shu, On the Gibbs Phenomenon IV: Recovering Exponential Accuracy in a Sub-interval from the Gegenbauer Partial Sum of a Piecewise Analytic Function, Math. Comp., 64 (1995), 1081-1095.
D. Gottlieb e C.-H. Shu, On the Gibbs Phenomenon V: Recovering Exponential Accuracy from Collocation Point Values of a Piecewise Analytic Function, Numer. Math., 71 (1995), 511-526.
D. Gottlieb e C.-H. Shu, On the Gibbs Phenomenon and Its Resolution, SIAM Review, 39, No. 4 (1997), 644-668.
L. Vozovoi, M. Israeli e A. Averbuch, Analysis and Application of Fourier-Gegenbauer Method to Stiff Differential Equations, SIAM J. Numer. Anal., 33 (1996), 1844-1863.
L. Vozovoi, A. Weill e M. Israeli, Spectrally Accurate Solution of Non-periodic Differential Equations by the Fourier-Gegenbauer Method, SIAM J. Numer. Anal., 34 (1997), 1451-1471.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.