Numerical calculations of Hölder exponents for the Weierstrass functions with (min,+)-wavelets
DOI:
https://doi.org/10.5540/tema.2014.015.03.0261Abstract
For all function f : Rn to R one introduces (min; +)-wavelets which are lower and upper hulls build from (min; +) analysis.One shows at theoretical level and on numerical applications for the Weierstrass functions, that (min, +)-wavelets decomposition opens a non-linear branch to the multi-resolution analysis of a signal, in particular for the Hölder exponents calculation and Empirical Mode Decomposition (EMD).References
[AAB+95] A. Arneodo, F. Argoul, E. Bacry, J. Elezgaray, and J.-F. Muzy. Ondelettes,
multifractales et turbulence. Diderot, Paris, 1995.
[Alt05] M. V. Altaisky. Wavelets, Theory, Applications and Implementation.
Universities Press, 2005.
[Ast94] N.M. Astaf'eva. Wavelet analysis : basic theory and some applications.
Uspekhi zicheskih nauk, 166(11) :11461170, 1994. (in Russian).
[Chu92] C.K. Chui. An Introduction to Wavelets. Academic Press Inc., 1992.
[Dau88] I. Daubechies. Orthonormal bases of compactly supported wavelets.
Comm. Pure. Apl. Math., 41 :909996, 1988.
[Dau92] I. Daubechies. Ten lectures on wavelets. S.I.A.M., Philadelphie, 1992.
[Far92] M. Farge. Wavelets and their application to turbulence. Annual review
of uid mechanics, 24 :395457, 1992.
[Gab46] D. Gabor. Theory of communication. Proc. IEE, 93 :429457, 1946.
[GGM85] P. Goupillaud, A. Grossmann, and J. Morlet. Cycle-octave and related
transforms in seismic signal analysis. Geoexploration, 23 :85102,
/85.
Dr Michel GONDRAN, Dr Abdel KENOUFI
[GM84] A. Grossmann and J. Morlet. Decomposition of Hardy functions into
square-integrable wavelets of constant shape. SIAM J. Math. Anal.,
(4) :723736, 1984.
[Gon96] M. Gondran. Analyse minplus. C. R. Acad. Sci. Paris 323, (323) :371
, 1996.
[Gon99] M. Gondran. Convergences de fonctions à valeurs dans Rk et analyse
minplus complexe. C. R. Acad. Sci. Paris, (329) :783788, 1999.
[GRG03] P. Flandrin G. Rilling and Paulo Goncalvès. On empirical mode decomposition
and its algorithms. IEEE-EURASIP Workshop on Nonlinear
Signal and Image Processing NSIP-03, Grado (I), 2003.
[HL98] S. Long M. Wu H. Shih Q. Zheng N. Yen C. Tung . Huang, Z. Shen and
H. Liu. The empirical mode decomposition and the hilbert spectrum
for nonlinear and non-stationary time series analysis. Proceedings of the
Royal Society : Mathematical, Physical and Engineering Sciences, 454,
:903995, 1998.
[Hun98] B. R. Hunt. The hausdor dimension of graphs of weierstrass functions.
Proceedings of the American Mathematical Society, 126 :791800, 1998.
[Jaf00] S. Jaard. Décompositions en ondelettes,"developments of mathematics
-2000" (j-p. pier ed.). pages 609634, 2000.
[JLKY84] J. Mallet-Paret J. L. Kaplan and J. A. Yorke. The lyapounov dimension
of nowhere dierentianle attracting torus. Ergod. Th. Dynam. Sys.,
:261281, 1984.
[MAF82] J. Morlet, G. Arens, and I. Fourgeau. Wave propagation and sampling
theory. Geophysics, 47 :203226, 1982.
[MG08] M. Minoux M. Gondran. Graphs, Dioids and Semirings. Springer, 2008.
[Mor81] J. Morlet. Sampling theory and wave propagation. In Proc. 51st Annu.
Meet. Soc. Explor. Geophys., Los-Angeles, 1981.
[SF98] K. Shneider and M. Farge. Wavelet approach for modelling and computing
turbulence, volume 1998-05 of Advances in turbulence modelling.
Von Karman Institute for Fluid Dynamics, Bruxelles, 1998.
[Tri93] C. Tricot. Courbes et dimension fractale. Springer-Verlag, 1993.
[Wei67] K. Weierstrass. über continuirliche funktionen eines reellen arguments,
die für keinen werth des letzteren einen bestimmten dierentialquotienten
besitzen. Karl Weiertrass Mathematische Werke, Abhandlungen II,
Gelesen in der Königl. Akademie der Wissenchaften am 18 Juli 1872,
[Zim81] V.D. Zimin. Hierarchic turbulence model. Izv. Atmos. Ocean. Phys.,
:941946, 1981.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.