Ordinal Sums of De Morgan Triples
DOI:
https://doi.org/10.5540/tema.2018.019.02.181Keywords:
t-norm, t-conorm, fuzzy negation, De Morgan triples, ordinal sumAbstract
In this paper we consider the ordinal sum of the summands (a_i, b_i, T_i) ((a_i, b_i, S_i)), where (T_i)_{i\in I}$ $((S_i)_{i\in I}) are a family of t-(co)norms and $(]a_i, b_i[)_{i\in I}$ a family of nonempty, pairwise disjoint open subintervals of [0,1], and we characterize the ordinal sum of the summands (a_i, b_i, N_i) where (N_i)_{i\in I} are a family of fuzzy negations such that N_i\geq N_S and prove that the function N is a fuzzy negation. In addition, we prove if (T_i, S_i, N_i) is a De Morgan triple satisfy some specific conditions, then (T, S, N) is a semi De Morgan triple.Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.