Scaling Symmetries and Conservation Laws for Variable-coefficients Nonlinear Dispersive Equations
DOI:
https://doi.org/10.5540/tema.2019.020.03.429Keywords:
Scaling symmetries, Variable-coefficients nonlinear dispersive equations, Nonlinear self-adjointness, Conservation lawsAbstract
Scaling symmetries arise in different branches of physics, and symmetry-based approaches are powerful tools for studying scaling-invariant models since they can provide conservation laws that are not obvious by inspection. In this framework, the class of variable-coefficients nonlinear dispersive equations vc$K(m,n)$, which contains several important evolution equations modeling nonlinear phenomena, is considered. For some of its scaling-invariant subclasses, we study its nonlinear self-adjointness and construct eight new local conservation laws associated with scaling symmetries by using a general theorem on conservation laws and the multipliers method. The property of scale invariance of those equations led to five conservation laws with a direct physical interpretation: energy, center of mass, and mass are the conserved quantities obtained in some cases.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.