Multiple Solutions for a Sixth Order Boundary Value Problem
DOI:
https://doi.org/10.5540/tcam.2021.022.01.00001Keywords:
numerical solutions, sixth-order, boundary value problem and multiple solutionsAbstract
This work presents conditions for the existence of multiple solutions for a sixth order equation with homogeneous boundary conditions using Avery Peterson's theorem. In addition, non-trivial examples are presented and a new numerical method based on the Banach's Contraction Principle is introduced.
References
M. M. ADJUSTOVS and A. J. LEPINS, “Extremal solutions of a boundaryvalue problem for a sixthorder equation,” Differ. Equ., vol. 50, no. 2, pp. 141–146, 2014.
R. P. AGARWAL, B. KOVACS, and D. O’REGAN, “Positive solutions for
a sixth-order boundary value problem with four parameters,” Bound. Value
Probl., no. 2, pp. 184–205, 2013.
R. P. AGARWAL, B. KOVACS, and D. O’REGAN, “Existence of positive
solution for a sixth-order differential system with variable parameters,” J. Appl.Math. Comput., no. 1-2, pp. 437–454, 2014.
T. GARBUZA, “On solutions of one 6-th order nonlinear boundary value problem,” Math. Model. Anal., vol. 13, no. 3, pp. 349–355, 2008.
W. W. SUQIN GE and Q. YANG, “Dependence of eigenvalues of sixth-order boundary value problems on the boundary,” Bull. Aust. Math. Soc., vol. 90, no. 3, pp. 457–468, 2014.
K. GHANBARI and H. MIRZAEI, “On the isospectral sixth order sturmliouville equation,” J. Lie Theory, vol. 23, no. 4, pp. 921–935, 2013.
J. R. GRAEF and B. YANG, “Boundary value problems for sixth order nonlinear ordinary differential equations,” Dynam. Systems Appl., vol. 10, no. 4, pp. 465–475, 2001.
T. GYULOV, “Trivial and nontrivial solutions of a boundary value problem for a sixth-order ordinary differential equation,” C. R. Acad. Bulgare Sci., vol. 9, no. 58, pp. 1013–1018, 2005.
M. MOLLER and Â. B. ZINSOU, “Sixth order differential operators with eigenvalue dependent boundary conditions,” Appl. Anal. Discrete Math., vol. 2, no. 7, pp. 378–389, 2013.
J. V. CHAPAROVA, L. A. PELETIER, S. A. T. F. GENG, and Y. YE, “Existence and nonexistence of nontrivial solutions of semilinear sixth-order ordinary differential equations,” Appl. Math. Lett., vol. 17, no. 10, pp. 1207–1212, 2004.
B. YANG, “POSITIVE SOLUTIONS TO A NONLINEAR SIXTH ORDER BOUNDARY VALUE PROBLEM,” Differential Equations Applications,
vol. 11, no. 2, pp. 307–317, 2019.
A. L. M. MARTINEZ, E. V. CASTELANI, and R. HOTO, “Solving a second order m-point boundary value problem,” Nonlinear Studies, vol. 26, no. 1, pp. 15–26, 2018.
A. L. M. MARTINEZ, E. V. CASTELANI, G. M. BRESSAN, and E. W. STIEGELMEIER, “Multiple Solutions for an Equation of Kirchhoff Type: Theoretical and Numerical Aspects,” Trends in Applied and Computational Mathematics, vol. 19, no. 3, pp. 559–572, 2018.
C. A. PENDEZA MARTINEZ, A. L. M. MARTINEZ, G. M. BRESSAN, E. V. CASTELANI, and R. M. de SOUZA, “Multiple solutions for a fourth order equation with nonlinear boundary conditions: theoretical and numerical aspects,” Differential Equations Applications, vol. 11, no. 3, pp. 335–348, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.