Numerical Analysis and Approximate Travelling Wave Solutions for a Higher Order Internal Wave System
DOI:
https://doi.org/10.5540/tcam.2022.023.01.00079Keywords:
Spectral method, Dispersive models, Stability analysis, Travelling wavesAbstract
In this work we focus on the numerical solution of a higher order bidirectional nonlinear model of Boussinesq type involving a nonlocal operator. Based on a von Neumann stability analysis for the linearized problem, an efficient and stable scheme for the nonlinear system is proposed. Our method is based on a numerical scheme known from the literature that solves satisfactorily a lower order linear system. Additionally, approximate periodic travelling wave solutions profiles for the higher order nonlinear system are presented. Such approximate travelling wave solutions are obtained from a solitary wave family of solutions for the Intermediate Long Wave (ILW) equation and the regularized Intermediate Long Wave (rILW) equation.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.