Um novo algoritmo para soluções ótimas locais do problema linear de dois níveis
DOI:
https://doi.org/10.5540/tema.2012.013.01.0051Abstract
Neste artigo, apresentamos um algoritmo para encontrar soluções ótimas locais dos problemas lineares de dois níveis. A cada ponto viável corrente, o método busca por melhores soluções no conjunto dos pontos que se encontram em suas faces adjacentes. Em cada passo tenta-se encontrar as faces adjacentes de maior dimensão, na esperança de acelerar o processo. Uma prova de corretude do método é fornecida, e testes computacionais foram realizados.References
J.F. Bard, "Practical Bilevel Optimization: Algorithms and Applications", Nonconvex Optimization and Its Applications, Vol. 30, Kluwer Academic Publishers, 1998.
H.I. Calvete, C. Galé, P.M. Mateo. A new approach for solving linear bilevel problems using genetic algorithms, European Journal of Operational Research, 188, No. 1 (2008), 14-28.
M.B.C. Campêlo, "Programação Linear em Dois Níveis: Uma Abordagem Teórica e Computacional", Tese de Doutorado, COPPE, UFRJ, Rio de Janeiro, 1999.
B. Colson, P. Marcotte, G. Savard, An overview of bilevel optimization, Annals of Operations Research, 153, No. 1 (2007), 235-256.
C.H.M. de Sabóia, M.B.C. Campêlo, S. Scheimberg, A computational study of global algorithms for bilevel linear programming, Numerical Algorithms, 35, No. 2-4 (2004), 155-173.
S. Dempe, "Foundations of Bilevel Programming", Nonconvex Optimization and Its Applications, Vol. 61, Kluwer Academic Publishers, 2002.
X. Deng, Complexity issues in bilevel linear programming, em "Multilevel Optimization: Algorithms and Applications" (A. Migdalas, P.M. Pardalos, P. Värbrand, eds.), Nonconvex Optimization and Its Applications, pp. 149-164, Kluwer Academic Publishers, 1998.
C.A. Floudas, C.E. Gounaris, A review of recent advances in global optimization. Journal of Global Optimization, 45, No. 1 (2009), 3-38.
J. Glackin, J.G. Ecker, M. Kupferschmid, Solving bilevel linear programs using multiple objective linear programming, Journal of Optimization Theory And Application, 140, No. 2 (2009), 197-212.
R.J. Kuoa, C.C. Huang, Application of particle swarm optimization algorithm for solving bi-level linear programming problem, Computers and Mathematics with Applications, 58, No. 4 (2009), 678-685.
K.H. Sabin, A.R. Ciric, A dual temperature simulated annealing approach for solving bilevel programming problems, Computers and Chemical Engineering, 23, No. 1 (1998), 11-25.
G. Still. Linear bilevel problems: genericity results and an efficient method for computing local minima, Mathematical Methods of Operations Research, 55, No. 3 (2002), 383-400.
U.P. Wen, A.D. Huang, A simple tabu search method to solve the mixed-integer linear bilevel programming problem, European Journal of Operational Research, 88, No. 3 (1996), 563-571.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.