Algoritmos ART para a Estimativa do Coeficiente de Absorção com Feixes Divergentes usando certas Funções de Bregman
DOI:
https://doi.org/10.5540/tema.2007.08.02.0181Abstract
Consideramos uma classe de algoritmos tipo ART (Algebraic Reconstruction Technique) empregando certas funções de Bregman, para a estimativa do coeficiente de absorção com feixes divergentes de poucas vistas onde o n´umero de incógnitas é maior ao n´umero de dados. O funcional de Bregman usado está relacionado às entropias estudadas por Shannon, Harvda-Charvát e Sharma-Taneja. Este funcional depende de certos parâmetros r e s. Com este funcional nós construímos uma família de distâncias de Bregman para ser empregada nos algoritmos ART. Neste trabalho procuram-se os valores ótimos dos parâmetros r quando s ! 1, que ofereçam os melhores resultados para a estimativa dos coeficientes de absorção. Casos testes são apresentados, empregando dados com ruídos randômicos.References
[1] L.M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Computational and Mathematical Physics Journal, 7 (1967), 200-217.
R.F. Carita Montero, N.C. Roberty, A.J. Silva Neto, Absorption coefficient estimation in heterogeneous media using a domain partition consistent with divergent beams, Inverse Problems in Engineering, 9 (2001), 587-617.
D. Dicken, A new approach towards simultaneous activity and attenuation reconstruction in emission tomography, Inverse Problems, 15 (1999), 931-960.
J. Havdra, F. Charvát, Concept of Structural -Entropy, Kybernetika, 3 (1967), 30-35.
A.C. Kak, M. Slaney, “Principles of Computerized Tomographic Imaging”, IEEE Press, 1988.
W.A. Kalender, X-Ray computed tomography - State of the art, em “Medical Optical Tomography: Functional Imaging and Monitoring” (R.F. Potter ed.), pp. 11-27, IS11 SPIE Bellingham, Washington, 1993.
M.L. Reis, N.C. Roberty, Maximum entropy algorithms for image reconstruction from projections, Inverse Problems, 8 (1992), 623-644.
C.E. Shannon, A mathematical theory of communication. Bell, System Tech. J., 27 (1948), 379-423.
B.D. Sharma, I.J. Taneja, Entropy of type (,) and other generalized measures in information theory, Metrika, 22 (1975), 205-215.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.