Projeção em Bases Uniformes Não-Ortogonais
DOI:
https://doi.org/10.5540/tema.2007.08.01.0043Abstract
Um método alternativo para o cálculo dos coeficientes da projeção de um sinal em uma base uniforme não-ortogonal é apresentado neste artigo. O método é decomposto em três etapas: determinação da transformação linear que gera uma base ortogonal e uniforme a partir da base original; representação do sinal na base ortogonal; e convolução dos coeficientes da transformação linear com a representa ção do sinal na base ortogonal.References
[1] R. Bellman, “Introduction to Matrix Analysis”, Classics in Applied Mathematics, SIAM, vol. 19, second edition, Academic Press Inc., 1997.
J.O. Chapa, R.M. Rao, Algorithms for designing wavelets to match a specified signal, IEEE Transactions on Signal Processing, 48, No. 12 (2000), 3395–3406.
A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.Ch. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation, 101, No. 23 (2000), e215–e220.
G.H. Golub, C.F. Van Loan, “Matrix Computations”, third edition, John Hopkins Press, New York, 1996.
R.M. Gray, On the asymptotic eigenvalue distribution of toeplitz matrices, IEEE Transactions on Information Theory, 18, No. 6 (1972), 725–730.
A. Gupta, S.D. Joshi, S. Prasad, A new method of estimating wavelet with desired features from a given signal, Signal Processing, 85, No. 1 (2005), 147–161.
T. Kailath, “Linear Systems”, Prentice Hall, Inc., 1980.
P. Lancaster, M. Tismenetsky, “The Theory of Matrices with Applications”, second edition, Academic Press Inc., 1985.
B.P. Lathi, “Signals Processing & Linear Systems”, Oxford University Press, 1998.
C. Meyer, “Matrix Analysis and Applied Linear Algebra”, SIAM, Philadelphia, PA, 2000.
A.V. Oppenheim, A.S. Willsky, S.H. Nawab, “Signals & Systems”, Prentice Hall Signal Processing Series. Prentice Hall, second edition, 1996.
L.K. Shark, C. Yu, Design of matched wavelets based on generalized Mexicanhat function, Signal Processing, 86, No. 7 (2006), 1451–1469.
G. Strang, “Introduction to Applied Mathematics”, Wellesley-Cambridge Press, 1986.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.