Invexidade Generalizada e Soluções Fracamente Eficientes de Problemas de Otimização Vetorial entre Espaços de Banach
DOI:
https://doi.org/10.5540/tema.2004.05.02.0327Abstract
Neste trabalho, introduzimos a noção de ponto crítico vetorial e de ponto crítico de Kuhn-Tucker para uma certa classe de problemas de otimização vetorial entre espaços de Banach. Através destas noções, obtivemos uma caracterização para as soluções fracamente eficiente de tais problemas.References
[1] A. Avez, “Calcul Differentiel”, Mason, Paris, 1983.
B.D. Craven, Lagrangean Conditions and Quasiduality, Bull. Austral. Math. Soc., 16 (1977), 325-339.
B.D. Craven, “Mathematical Programming and Control Theory”, Chapman and Hall: London, 1978.
B.D. Craven, “Control and Optimization”, Chapman and Hall, 1995.
R.R. Egudo, M.A. Hanson, Duality with generalized convexity, J. Austral. Math. Soc. Ser. B, 28 (1986), 10-21.
M.A. Hanson, On Sufficiency of Kuhn- Tucker Conditions, J. Math. Anal. and Appl., 30 (1981), 545-550.
V. Jeyakumar, Strong and weak invexity in Mathematical Programming, Collection: Methods of Operations Research, 55 (1980), 109-125.
D. The Luc, “Theory of Vector Optimization”, Lect. Notes in Economics and Mathematical Systems, 319, Berlin, Springer-Verlag (1989).
O.L. Mangasarian, “Nonlinear Programming”, Mac Graw-Hill: New York, 1969.
D.H. Martin, The Essence of Invexity, J. Optim. Theory Appl., 47 (1985), 65-76.
V. Preda, On duality with generalized convexity, Boll. Un. Mat. Ital. A (7), 5 (1991), 291-305.
R. Osuna-Gómez, A. Rufián-Lizana and P. Ruiz-Canales, Invex Functions and Generalized Convexity in Multiobjective Programming, J. of Optim. Theory Appl., 98 (1998), 651-661.
R. Osuna-Gómez, “Programción con Objetivos Múltiples: Dualidad”, Tese de Doutorado, Universidad de Sevilla, Espa˜na, Sevilla, Espanha, 1996.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.