Simultaneous Controllability for a System with Resistance Term

Authors

  • G.O. ANTUNES
  • F.A. ARARUNA
  • L.A. MEDEIROS

DOI:

https://doi.org/10.5540/tema.2002.03.01.0031

Abstract

In this work we study the simultaneous controllability for a system of equations that constitutes a model of dynamical elasticity for incompressible materials.

References

[1] H. Brezis, “Analyse Fonctionelle, Théorie et Applications”, Dunod, Paris, 1999

M.M. Cavalcanti, V.N. Domingos Cavalcanti, A. Rocha and J.A. Soriano, Exact controllability of a second-order integro-differential equation with a pressure term, EJQTDE, 9 (1998), 1-18.

A. Haraux, On a completion problem in the theory of distribute control of wave equations, “Nonlinear Partial Differencial Equations and Their Applications”, Lect. Coll`ege de France Seminar, Paris 1987-88, Vol. X, Pitman Reserch Notes in Math., 220 (1991), 242-271.

B. Kapitonov, “Simultaneous Observability of Some Hyperbolic Systems”, relat ório de pesquisa e desenvolvimento, LNCC.

V. Komornik, “Controllability and Stabilization. The Multiplier Method”, Masson, Paris, 1994.

J.L. Lions, “Exact Controllability, Stabilization and Pertubations for Distributed Systems”, J. Von Newmann Lecture, Boston, 1986, SIAM Review, March, 1988.

J. L. Lions, On some hyperbolic equations with a pressure term, em “Proceedings of the conference dedicated to Louis Nirenberg”, Trento, Italy, september 3-8, 1990, Harlow: Longman Scientific and Technical, Pitman Res. Notes Math. Ser., 269 ( 1992), 196-208.

E. Zuazua, Contrôle simultané de deux équations des ondes, to appear.

Published

2002-06-01

How to Cite

ANTUNES, G., ARARUNA, F., & MEDEIROS, L. (2002). Simultaneous Controllability for a System with Resistance Term. Trends in Computational and Applied Mathematics, 3(1), 31–40. https://doi.org/10.5540/tema.2002.03.01.0031

Issue

Section

Original Article