Técnicas Numéricas para Simulação da Contração Planar de Fluidos Oldroyd-B

Authors

  • L. GROSSI
  • M.F. Tomé
  • A.F. CASTELO
  • N. MANGIAVACCHI
  • J.A. CUMINATO

DOI:

https://doi.org/10.5540/tema.2002.03.01.0131

Abstract

O objetivo deste trabalho é o desenvolvimento de um método numérico capaz de simular escoamentos viscoelásticos de um fluido Oldroyd-B para o problema da contração planar 4:1. Simulação numérica de escoamentos de fluidos viscoelásticos através de uma contração é propensa a erros acentuados na avaliação da tensão e do campo de velocidade próximo ao canto reentrante do estrangulamento. Introduzimos uma técnica numérica baseada em diferenças finitas, permitindo-nos analisar o comportamento de fluido Oldroyd-B com altos números de Weissenberg no problema da contração planar.

References

[1] E. Brasseur, M.M. Fyrillas, G.C. Georgiou e M.J. Crochet, The time-dependent extrudate-swell problem of an Oldroyd-B °uid with slip along the wall, J. Rheol., 42, No. 3 (1998), 549-566.

E.O.A. Carew, P. Townsed, and M.F. Webster, A Taylor-Petrov-Galerkin algorithm for viscoelastic °ow, J. Non-Newtonian Fluid Mech., 50 (1993), 253-287.

M.J. Crochet, A.R. Davis and K. Walters, Numerical Simulation of Non- Newtonian Flow", Elsevier, New York, 1984.

V.G. Ferreira, M.F. Tomé, N. Mangiavacchi, A.F. Castelo, J.A. Cuminato, A.O. Fortuna and S. Mckee, High order upwinding and the hydraulic jump, Int. J. Num. Meth. Fluids, to appear.

X. Huang, N. Phan-Thien e R.I. Tanner, Viscoelastic °ow between eccentric rotating cylinders: Unstructured control volume method, J. Non-Newtonian Fluid Mech., 64 (1996), 71-92.

J.M. Marchal, and M.J. Crochet, A new mixed ¯nite element for calculating viscoelastic °ow, J. Non-Newtonian Fluid Mech., 26 (1987), 77-114.

H. Matallah, P. Townsend and M. F. Webster, Recovery and stress-splitting schemes for viscoelastic °ows, J. Non-Newtonian Fluid Mech., 75 (1998), 139-166.

G. Mompean, E M. Deville, Unsteady ¯nite volume of Oldroyd-B °uid through a three-dimensional planar contraction, J. Non-Newtonian Fluid Mech., 72 (1997), 253-279.

R.L. Panton, Incompressible Flow", John Wiley & Sons, New York, 1984.

T.N. Phillips and A.J. Williams, Viscoelastic °ow though a planar contraction using a semi-Lagrangian ¯nite volume method, J. Non-Newtonian Fluid Mech., 87 (1999), 215-246.

T. Sato and S.M. Richardson, Explicit numerical simulation of time-dependent viscoelastic °ows problems by a ¯nite element/¯nite volume method, J. Non-Newtonian Fluid Mech., 51 (1994), 249-275.

M.F. Tome e S. McKee, GENSMAC: A Computational Marker-and-Cell Method for Free Surface Flows in General Domains, J. of Computational Physics, 110 (1994), 171-186.

M.F. Tome, N. Mangiavacchi, J.A. Cuminato, A. Castelo e S. McKee, A Marker-and-Cell technique for simulating unsteady viscoelastic free surface °ows, Notas do ICMC, 63 (2001).

J.Y. Yoo, and Y. Na, A numerical study of the planar contraction °ow of a viscoelastic °uid using the SIMPLER algorithm, J. Non-Newtonian Fluid Mech. 30 (1991), 89-106.

Published

2002-06-01

How to Cite

GROSSI, L., Tomé, M., CASTELO, A., MANGIAVACCHI, N., & CUMINATO, J. (2002). Técnicas Numéricas para Simulação da Contração Planar de Fluidos Oldroyd-B. Trends in Computational and Applied Mathematics, 3(1), 131–140. https://doi.org/10.5540/tema.2002.03.01.0131

Issue

Section

Original Article