Análise de componentes principais aplicada à estimação de parâmetros no modelo de regressão logística quadrático
DOI:
https://doi.org/10.5540/tema.2013.014.01.0057Abstract
A literatura disponível mostra que a quase totalidade dos trabalhos sobre o modelo de regressão logística considera apenas o modelo com funções discriminantes lineares. Entretanto, há situações nas quais funções discriminantes quadráticas são de grande utilidade e podem apresentar melhores resultados. Porém, o modelo de regressão logística quadrático envolve a estimação de um grande número de parâmetros desconhecidos, o que pode levar a algumas dificuldades, do ponto de vista computacional, especialmente quando há um grande número de variáveis independentes no conjunto de dados. Neste trabalho utiliza-se um conjunto de componentes principais das variáveis independentes a fim de reduzir as dimensões do modelo a ser estimado, com variáveis independentes contínuas, bem como os custos computacionais para a estimação de parâmetros na regressão logística quadrática politômica, sem perda de eficiência. Simulações com conjuntos de dados extraídos da literatura disponível mostram que o modelo de regressão logística quadrático, com componentes principais, é computacionalmente viável e, geralmente, produz resultados melhores que aqueles obtidos pelo modelo de regressão logística clássico, em termos de taxas de classificações corretamente efetuadas.References
A.M. Aguilera, M. Escabias, M.J. Valderrama, Using principal components for estimating logistic regression with high-dimensional multicollinear data, Computational Statistics & Data Analysis, 55 (2006), 1905--1924.
A. Albert, J. A. Anderson, On the existence of maximum likelihood estimates in logistic regression models, Biometrika, 71 (1984), 1--10.
J.A. Anderson, Quadratic logistic discrimination, Biometrika, 62 (1975), 149--154.
I. Andruski-Guimarães e A. Chaves Neto, Estimation in polytomous logistic model: comparison of methods, Journal of Industrial and Management Optimization, 5 (2009), 239--252.
L. Barker, C. Brown, Logistic regression when binary predictor variables are highly correlated, Satistics in Medicine, 20 (9-10) (2001), 1431--1442.
D. Brodnjak-Voncina, Z.C. Kodba,C. Novic, Multivariate data analysis in classification of vegetable oils characterized by the content of fatty acids. Chemometrics and Intelligent Laboratory Systems 75 (2005), 31--43.
J.B. Copas, Binary regression models for contaminated data. With discussion. Journal of Royal Statistical Society B, 50 (1988), 225--265.
A. Ekholme, J. Palmgren, A model for binary response with misclassification. GLIM 82 Proceedings of the International Conference on Generalized Linear Models (1982), 128--143.
R.A. Fisher, The use of multiple measurements in taxonomic problems. Annals of Eugenics 3 (1936), 179--188.
D. Gervini, Robust adaptive estimators for binary regression models. Journal of Statistical Planning and Inference, 131, 297--311 (2005).
G. Heinze, M. Schemper, A solution to the problem of separation in logistic regression. Statistics in Medicine} {bf 21 (2002), 2409--2419.
M. Hubert, K. van Driessen, Fast and robust discriminant analysis. {em Computational Statistics & Data Analysis}, {bf 45} (2004), 301--320.
bibitem{jolliffe} I.T. Jolliffe, A note on the use of principal components in regression. {em Applied Statistics}, {bf 31}, 3 (1982), 300--303.
bibitem{kodzar} N. Kodzarkhia, G.D. Mishra, L. Reiersolmoen, Robust estimation in the logistic regression model. Journal of Statistical Planning and Inference}, 98 (2004), 211-223.
W. F. Massy, Principal component regression in exploratory statistical research. Journal of American Statistical Association, (1965), 234--246.
G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, p. 130. John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A. 2004.
P.J. Rousseeuw, A. Christmann, Robustness against separation and outliers in logistic regression, Computational Statistics & Data Analysis, 43 (2003), 315--332.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.