Simulação tridimensional adaptativa da separação das fases de uma mistura bifásica usando a equação de Cahn-Hilliard
DOI:
https://doi.org/10.5540/tema.2012.013.01.0037Abstract
Simulamos a separação dos componentes de uma mistura bifásica com a equação de Cahn-Hilliard. Esta equação contém intrincados termos não lineares e derivadas de alta ordem. Além disso, a delgada região de transição entre os componentes da mistura requer muita resolução. Assim, determinar a solução numérica da equação de Cahn-Hilliard não é uma tarefa fácil, principalmente em três dimensões. Conseguimos a resolução exigida no tempo usando uma discretização semi-implícita de segunda ordem. No espaço, obtemos a precisão requerida utilizando malhas refinadas localmente com a estratégia AMR. Essas malhas se adaptam dinamicamente para recobrir a região de transição. O sistema linear proveniente da discretização é solucionado por intermédio de técnicas multinível-multigrid.References
I. Altas, J. Dym, M.M. Gupta, R.P. Manohar, Multigrid solution of automatically generated high-order discretizations for the biharmonic equation, SIAM J. Sci. Comput., 19 (1998), 1575–1585.
I. Altas, J. Erhel, M.M. Gupta, High accuracy solution of three-dimensional biharmonic equations, Num. Algorith., 29 (2002), 1–19.
V.E. Badalassi, H.D. Ceniceros, S. Banerjee, Computation of multiphase systems with phase field models, J. Comput. Phys., 190 (2003), 371–397.
J. Bell, M.J. Berger, J. Saltzman, M. Welcome, Three-dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM J. Sci. Comput., 15 (1994), 127–138.
M.J. Berger, Data structures for adaptive grid generation, SIAM J. Sci. Stat. Comput., 7 (1986), 904–916.
M.J. Berger, I. Rigoutsos, An algorithm for point clustering and grid generation, IEEE Trans. Syst. Man Cybernet., 21 (1991), 1278–1286.
A.J. Bray, Theory of phase-ordering kinetics, Adv. Phys., 43 (1994), 357–459.
W.L. Briggs, “A Multigrid Tutorial”, Society for Industrial and Applied Mathematics, Philadelphia, 1987.
J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system - I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258–267.
J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system - II. Thermodynamical basis, J. Chem. Phys., 30 (1959), 1121–1135.
J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system - III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 31 (1959), 688–699.
H.D. Ceniceros, R.L. Nós, A.M. Roma, Three-dimensioal, fully adaptive simulations of phase-field fluid models, J. Comput. Phys., 229 (2010), 6135–6155.
H.D. Ceniceros, R.L. Nós, A.M. Roma, Solução de equações diferenciais parciais elípticas por técnicas multinível-multigrid em malhas tridimensionais bloco-estruturadas com refinamento localizado, em “XXV Congresso Nacional de Matemática Aplicada e Computacional”, São Paulo, SP, 2005.
H.D. Ceniceros, A.M. Roma, A nonstiff, adaptive mesh refinement-based method for the Cahn-Hilliard equation, J. Comput. Phys., 225 (2007), 1849–1862.
R. Chella, J. Viñals, Mixing of a two-phase fluid by a cavity flow, Phys. Rev. E, 53 (1996), 3832–3840.
M.E. Gurtin, D. Polignone, J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815–831.
J. Kim, K. Kang, J.S. Lowengrub, Conservative multigrid methods for Cahn-Hilliard fluids, J. Comput. Phys., 193 (2004), 511–543.
J. Kim, A numerical method for the Cahn-Hilliard equation with a variable mobility, Commun. Nonlinear Sci. Numer. Simul., 12 (2007), 1560–1571.
S.F. Mccormick, Multigrid methods, em “Frontiers in Applied Mathematics”, Vol. 3, SIAM Books, Philadelphia, 1987.
R.L. Nós, “Simulações de escoamentos tridimensionais bifásicos empregando métodos adaptativos e modelos de campo de fase”, Tese de Doutorado, IME, USP, São Paulo, SP, 2007.
U. Trottenberg, C. Oosterlee, A. Schüller, “Multigrid”, Academic Press, London, 2001.
C. Xu, T. Tang, Stability analysis of a large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal., 44 (2006), 1759–1779.
I. Yavneh, Multigrid smoothing factors for red-black Gauss-Seidel relaxation applied to a class of elliptic operators, SIAM J. Numer. Anal., 32 (1995), 1126–1138.
O. Wodo, B. Ganapathysubramanian, Computationally efficient solution to the Cahn-Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem, J. Comput. Phys., 230 (2011), 6037–6060.
Downloads
Additional Files
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
- Sem título (Português (Brasil))
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.