Um Método Integral de Contorno para a Modelagem da Propagação de Ondas Internas em um Sistema de Dois Fluidos
DOI:
https://doi.org/10.5540/tema.2017.018.02.0175Keywords:
Ondas aquáticas internas, Método da integral de contorno, Discretização do operador Dirichlet-NeumannAbstract
Este trabalho tem como objetivo utilizar a formulação integral de contorno na construção de um método numérico para modelar a propagação de ondas internas na interface entre dois fluidos. Apresentamos vários exemplos numéricos para ilustrar a acurácia do método proposto e também mostrar sua utilidade na simulação das interações de ondas não lineares.
References
M. Ablowitz & H. Segur. Solitons and the Inverse Scattering Transform. SIAM, (1981).
K. Atkinson & W. Han. Theoretical Numerical Analysis. Springer Science, (2009).
C. Bardos & A. Fursikov (ed.). Instability in Models Connected with Fluid Flows I, II. Springer, (2008).
L. C. Evans. Partial Differential Equations. 2nd. ed., AMS, (2010).
D. Fructus, D. Clamond, J. Grue & Ø. Kristiansen. An efficient model for three-dimensional surface wave simulations Part I: Free space problems. J. of Computational Physics, 205 (2005), 665–685.
P.A. Guidotti. A first kind boundary integral formulation for the Dirichlet-to-Neumann map in 2D. J. of Computational Physics, 190 (2008), 325–345.
J. Grue. Interfacial Wave Motion of Very Large Amplitude: Formulation in Three Dimensions and Numerical Experiments. Procedia IUTAM, 8 (2013), 129–143.
F. John. Partial Differential Equations. 4th ed., Springer-Verlag, (1982).
A. Nachbin & R. Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete and Continuous Dynamical Systems, 34 (2014), 3135–3153.
R. Massel. Internal Gravity Waves in the Shallow Seas. Springer, (2015).
Yu.Z. Miropolsky & O.D. Shiskina. Dynamics of Internal Gravity Waves in the Ocean. Springer, (2001).
H. Lamb. Hydrodynamics. Cambridge Univ. Press, (1895).
O. Laget & F. Dias. Numerical computation of capillary gravity interfacial solitary waves. J. Fluid Mech., 349 (1997), 221–251.
J-C. Saut. Asymptotic models for surface and internal waves. Publicações matemáticas, Sociedade Brasileira de Matemática, (2013).
L. N. Trefethen. Spectral Methods in MATLAB. SIAM, (2001).
J. Wilkening & V. Vasan. Comparison of five methods of computing the Dirichlet-Neumann operator for the water wave problem. Contemp. Math., 635 (2015), 175–210.
L. Xu & P. Guyenne. Numerical simulation of three-dimensional nonlinear water waves. J. of Computational Physics, 228 (2009), 8446–8466.
Y. Yan & I.H. Sloan. On integral equations of the first kind with logarithmic kernels. J. of Integral Equations and Applications, 1 (1988), 549–579.
V.E. Zakharov & E. Kutznetzov. Hamiltonian formalism for nonlinear waves. Uspekhi Fiz. Nauk, 11 (1997), 1137–1167.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.