SPC-Threshold: Uma Proposta de Limiarização para Filtragem Adaptativa de Sinais

Authors

  • F. M. Bayer
  • A. J. Kozakevicius

DOI:

https://doi.org/10.5540/tema.2010.011.02.0121

Abstract

Neste trabalho é apresentada uma proposta de limiarização para filtragem adaptativa de sinais por meio do truncamento dos coeficientes wavelets do sinal analisado. O parâmetro de corte para limiarização é estimado por analogia à aplicação dos gráficos de controle, que é uma ferramenta do controle estatístico de processo (SPC - Statistical Process Control ). O método proposto, denominado SPC-Threshold, é formulado e para sua validação são realizadas simulações computacionais. Os resultados do SPC-Threshold são comparados com aqueles obtidos com limiares de truncamento já consagrados, como o Universal Threshold, o SURE Threshold e suas variações.

References

[1] G. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for image denoising and compression, IEEE Transactions on Image Processing, 9, No. 9 (2000), 1532–1546.

[2] G.D. Clifford, A. Shoeb, P.E. Mcsharry, B.A. Janz, Model-based filtering, compression and classification of the ECG, Inter. J. of Bioelectromagnetism, 7, No. 1 (2005), 158–161.

[3] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Applied Mathematics, 41 (1988), 909–996.

[4] D.L. Donoho, I.M. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, 81 (1994), 425–455.

[5] D.L. Donoho, I.M. Johnstone, Adapting to unknow smoothing via wavelet shrinkage, J. American Statistical Association, 90 (1995), 1200–1224.

[6] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian, D. Picard,Wavelet shrinkage: assimptopia?, J. Royal Statistical Society serie B, 57 (1995), 301–369.

[7] L.A. Jones, C.W. Champ, Phase I control charts for times between events, Quality and Reliability Engineering International, 18 (2002), 479–488.

[8] A. Kozakevicius, C.R. Rodrigues, R.C. Nunes, R. Guerra-Filho, Adaptive ECG filtering and QRS detection using orthogonal wavelet transform, In IASTED Inter. Conference on BioMedical Engineering, Innsbruck, ACTAPress, 2005.

[9] S.G. Mallat, A theory for multiresolution signal decomposition, the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (1989), 574–693.

[10] S.G. Mallat, “A Wavelet Tour of Signal Processing”, Los Angeles, Academic Press-Elsevier, 1998.

[11] F. Mochimaru, Y. Fujimoto, Y. Ishikawa, Detecting the Fetal Eletrocardiogram by Wavelet Theory-Based Methods, Progress in Biomedical Reserch, 7, No. 3 (2002), 185–193.

[12] D.C. Montgomery, “Introduction to Statistical Quality Control”, 3.ed., John Wiley e Sons, New York, 1997.

[13] P.A. Morettin, “Ondas e Ondaletas - Da Análise de Fourier à Análise de Ondaletas”, Editora da USP, São Paulo, 1999.

[14] O.M. Nielsen, “Wavelets in Scientific Computing”, Ph.D. Thesis, Technical University of Denmark, 1998.

[15] R Development Core Team R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org, 2007.

[16] Y. Sheng, “Wavelet Transform” in The Transforms and Applications Handbook”, (A.D. Poularikas, ed.), 1.ed., Boca Raton, CRC Press and IEEE Press, (1996), 747–827.

[17] W.A. Shewhart, “Economic Control of Quality of Manufactured Product”, New York, MacMillan, 1931.

[18] E.M. Souza, A. Pagamisse, M. Meneguette Jr., J.F.G. Monico, Processamento de sinais com wavelets: redução do efeito do multicaminho do sinal GPS, TEMA Tend. Mat. Apl. Comput., 6, No. 1 (2005), 177–186.

[19] C. Stein, Estimation of the mean of a multivariate normal distribution, Annals of Statistics, 9 (1981), 1135–1151.

Published

2010-06-01

How to Cite

Bayer, F. M., & Kozakevicius, A. J. (2010). SPC-Threshold: Uma Proposta de Limiarização para Filtragem Adaptativa de Sinais. Trends in Computational and Applied Mathematics, 11(2), 121–132. https://doi.org/10.5540/tema.2010.011.02.0121

Issue

Section

Original Article