SPC-Threshold: Uma Proposta de Limiarização para Filtragem Adaptativa de Sinais
DOI:
https://doi.org/10.5540/tema.2010.011.02.0121Abstract
Neste trabalho é apresentada uma proposta de limiarização para filtragem adaptativa de sinais por meio do truncamento dos coeficientes wavelets do sinal analisado. O parâmetro de corte para limiarização é estimado por analogia à aplicação dos gráficos de controle, que é uma ferramenta do controle estatístico de processo (SPC - Statistical Process Control ). O método proposto, denominado SPC-Threshold, é formulado e para sua validação são realizadas simulações computacionais. Os resultados do SPC-Threshold são comparados com aqueles obtidos com limiares de truncamento já consagrados, como o Universal Threshold, o SURE Threshold e suas variações.References
[1] G. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for image denoising and compression, IEEE Transactions on Image Processing, 9, No. 9 (2000), 1532–1546.
[2] G.D. Clifford, A. Shoeb, P.E. Mcsharry, B.A. Janz, Model-based filtering, compression and classification of the ECG, Inter. J. of Bioelectromagnetism, 7, No. 1 (2005), 158–161.
[3] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Applied Mathematics, 41 (1988), 909–996.
[4] D.L. Donoho, I.M. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika, 81 (1994), 425–455.
[5] D.L. Donoho, I.M. Johnstone, Adapting to unknow smoothing via wavelet shrinkage, J. American Statistical Association, 90 (1995), 1200–1224.
[6] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian, D. Picard,Wavelet shrinkage: assimptopia?, J. Royal Statistical Society serie B, 57 (1995), 301–369.
[7] L.A. Jones, C.W. Champ, Phase I control charts for times between events, Quality and Reliability Engineering International, 18 (2002), 479–488.
[8] A. Kozakevicius, C.R. Rodrigues, R.C. Nunes, R. Guerra-Filho, Adaptive ECG filtering and QRS detection using orthogonal wavelet transform, In IASTED Inter. Conference on BioMedical Engineering, Innsbruck, ACTAPress, 2005.
[9] S.G. Mallat, A theory for multiresolution signal decomposition, the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (1989), 574–693.
[10] S.G. Mallat, “A Wavelet Tour of Signal Processing”, Los Angeles, Academic Press-Elsevier, 1998.
[11] F. Mochimaru, Y. Fujimoto, Y. Ishikawa, Detecting the Fetal Eletrocardiogram by Wavelet Theory-Based Methods, Progress in Biomedical Reserch, 7, No. 3 (2002), 185–193.
[12] D.C. Montgomery, “Introduction to Statistical Quality Control”, 3.ed., John Wiley e Sons, New York, 1997.
[13] P.A. Morettin, “Ondas e Ondaletas - Da Análise de Fourier à Análise de Ondaletas”, Editora da USP, São Paulo, 1999.
[14] O.M. Nielsen, “Wavelets in Scientific Computing”, Ph.D. Thesis, Technical University of Denmark, 1998.
[15] R Development Core Team R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org, 2007.
[16] Y. Sheng, “Wavelet Transform” in The Transforms and Applications Handbook”, (A.D. Poularikas, ed.), 1.ed., Boca Raton, CRC Press and IEEE Press, (1996), 747–827.
[17] W.A. Shewhart, “Economic Control of Quality of Manufactured Product”, New York, MacMillan, 1931.
[18] E.M. Souza, A. Pagamisse, M. Meneguette Jr., J.F.G. Monico, Processamento de sinais com wavelets: redução do efeito do multicaminho do sinal GPS, TEMA Tend. Mat. Apl. Comput., 6, No. 1 (2005), 177–186.
[19] C. Stein, Estimation of the mean of a multivariate normal distribution, Annals of Statistics, 9 (1981), 1135–1151.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.