Generalized Exponential Bidirectional Fuzzy Associative Memory with Fuzzy Cardinality-Based Similarity Measures Applied to Face Recognition
DOI:
https://doi.org/10.5540/tema.2018.019.02.221Palavras-chave:
Associative memory, fuzzy set theory, similarity measure, face recognition.Resumo
Associative memories are biologically inspired models designed for the storage and recall by association. Such models aim to store a finite set of associations, called the fundamental memory set. The generalized exponential bidirectional fuzzy associative memory (GEB-FAM) is a heteroassociative memory model designed for the storage and recall of fuzzy sets. A similarity measure, that is, a function that indicates how much two fuzzy sets are equal, is at the core of a GEB-FAM model. In this paper, we present a detailed study on the use of cardinality-based similarity measures in the definition of a GEB-FAM. Moreover, we evaluate the performance of the GEB-FAMs defined using such measures in a face recognition problem.Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.