Fractais, Congruências e Primos: Uma Estratificação Visual dos Números Inteiros via Fractais de Sierpinski
DOI:
https://doi.org/10.5540/tema.2020.021.03.483Palavras-chave:
Congruência, Números Primos, N-gons, Fractais de SierpinskiResumo
Neste trabalho construímos um painel visual enumerado usando fractais do tipo Sierpinski n-gons com o objetivo de analisar algumas sequências de números inteiros, principalmente a sequência dos números primos e algumas de suas subsequências clássicas. Essa estrutura visual gera uma estratificação do conjunto dos inteiros que tem forte ligação com a aritmética modular, tornando-se assim um bom painel de visualização para objetos e resultados da teoria dos números. Inspirados na construção do Triângulo de Sierpinski por meio do Triângulo de Pascal e pelos trabalhos de Ulam sobre a espiral de primos, esta enumeração surgiu naturalmente a partir da geração computacional de fractais $n$-gons onde tomamos como estratégia o algoritmo determinístico citado por Steven Schlicker e Kevin Dennis.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.