Fractional Derivatives Applied to Epidemiology

Autores

  • N. Z. Monteiro Universidade Federal de Juiz de Fora
  • S. R. Mazorche Universidade Federal de Juiz de Fora

DOI:

https://doi.org/10.5540/tcam.2021.022.02.00157

Palavras-chave:

SIR model, Fractional Derivatives, COVID-19

Resumo

We seek investigate the use of fractional derivatives, both analytically and through simulations. We derivate some models and perform investigations about them, discussing difficulties and differences between classic and fractional models. Also, we analyzed the COVID-19 pandemic using a fractional epidemiological SIR model and performed a numerical analysis using finite differences and implementation in MATLAB.

Referências

W. H. Organization et al., “Coronavirus disease 2019 (covid-19): situationreport, 190,” 2020.

K. McIntosh, M. S. Hirsch, and A. Bloom, “Coronavirus disease 2019 (covid-19),”UpToDate Hirsch MS Bloom, vol. 5, 2020.

C. N. Angstmann, B. I. Henry, and A. V. McGann, “A fractional-order in-fectivity and recovery sir model,”Fractal and Fractional, vol. 1, no. 1, p. 11,2017.

W. O. Kermack and A. G. McKendrick, “Contributions to the mathematicaltheory of epidemics–i. 1927.,” 1991.

A. Slavík,Product integration, its history and applications. MatfyzpressPrague, 2007.

R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “Onthe lambertw function,”Advances in Computational mathematics, vol. 5, no. 1,pp. 329–359, 1996.

N. Becker, B. B. GK, P. Caley,et al., “Using mathematical models to assessresponses to an outbreak of an emerged viral respiratory disease. final reportto the australian government department of health and ageing,”National Cen-tre for Epidemiology and Population Health. Canberra: Australian NationalUniversity, 2006.

K. Wang and J. Huang, “High order fast algorithm for the caputo fractionalderivative,”arXiv preprint arXiv:1705.06101, 2017.

M. A. Khan and A. Atangana, “Modeling the dynamics of novel coronavirus(2019-ncov) with fractional derivative,”Alexandria Engineering Journal, 2020.

A. S. Shaikh, I. N. Shaikh, and K. S. Nisar, “A mathematical model of covid-19using fractional derivative: Outbreak in india with dynamics of transmissionand control,” 2020.

H. Sun, W. Chen, H. Wei, and Y. Chen, “A comparative study of constant-order and variable-order fractional models in characterizing memory propertyof systems,”The European Physical Journal Special Topics, vol. 193, no. 1,p. 185, 2011.

E. C. de Oliveira,Solved Exercises in Fractional Calculus. Springer, 2019.

M. Ortigueira and J. Machado, “Fractional definite integral,”Fractal and Frac-tional, vol. 1, no. 1, p. 2, 2017.

A. Dokoumetzidis, R. Magin, and P. Macheras, “A commentary on fraction-alization of multi-compartmental models,”Journal of pharmacokinetics andpharmacodynamics, vol. 37, no. 2, pp. 203–207, 2010.

D. Rostamy and E. Mottaghi, “Numerical solution and stability analysis ofa nonlinear vaccination model with historical effects,”Hacettepe Journal ofMathematics and Statistics, vol. 47, no. 6, pp. 1478–1494, 2017.

I. Ameen,Fractional Calculus: Numerical Methods and SIR Models. PhDthesis, PhD thesis, University of Padova, Padova, Italy, 2017.

R. Almeida, “Analysis of a fractional seir model with treatment,”Applied Math-ematics Letters, vol. 84, pp. 56–62, 2018.

M. R. Islam, A. Peace, D. Medina, and T. Oraby, “Integer versus fractional or-der seir deterministic and stochastic models of measles,”International Journalof Environmental Research and Public Health, vol. 17, no. 6, p. 2014, 2020.

A. C. F. N. Gomes and A. De Cezaro, “Modelo sirc fracionário com múltiplasordens para influenza,”Scientia Plena, vol. 15, no. 4, 2019.

A. Ahmad, M. Farman, M. Ahmad, N. Raza, and M. Abdullah, “Dynamicalbehavior of sir epidemic model with non-integer time fractional derivatives: Amathematical analysis,”Int. J. Adv. Appl. Sci, vol. 5, no. 1, pp. 123–129, 2018.

M. Farman, A. Ahmad, H. Muslim, M. Ahmad,et al., “Dynamical behavior ofhepatitis b fractional-order model with modeling and simulation,”Journal ofBiochemical Technology, vol. 10, no. 3, p. 11, 2019.

S. Hasan, A. Al-Zoubi, A. Freihet, M. Al-Smadi, and S. Momani, “Solutionof fractional sir epidemic model using residual power series method,”AppliedMathematics and Information Sciences, vol. 13, no. 2, pp. 153–161, 2019.

A. Dokoumetzidis, R. Magin, and P. Macheras, “Fractional kinetics in multi-compartmental systems,”Journal of pharmacokinetics and pharmacodynamics,vol. 37, no. 5, pp. 507–524, 2010.

H. Bateman,Higher transcendental functions, vol. 3. McGraw-Hill Book Com-pany, 1953.

C. N. Angstmann, B. I. Henry, and A. V. McGann, “A fractional-order infectiv-ity sir model,”Physica A: Statistical Mechanics and its Applications, vol. 452,pp. 86–93, 2016.

J. Herskovits, “Feasible direction interior-point technique for nonlinear op-timization,”Journal of optimization theory and applications, vol. 99, no. 1,pp. 121–146, 1998.

IBGE, “Taxa bruta de mortalidade por mil habitantes – brasil –2000 a 2015.”https://brasilemsintese.ibge.gov.br/populacao/taxas-brutas-de-mortalidade.html, 2015.

Microsoft/Bing, “Covid-19-data,” 2020. [Online; accessed 29-July-2020].

Wikipedia contributors, “Demographics of italy — Wikipedia, the free ency-clopedia,” 2020. [Online; accessed 29-July-2020].

R. Ranjan, “Estimating the final epidemic size for covid-19 outbreak usingimproved epidemiological models,”medRxiv, 2020.

Downloads

Publicado

2021-06-28

Como Citar

Monteiro, N. Z., & Mazorche, S. R. (2021). Fractional Derivatives Applied to Epidemiology. Trends in Computational and Applied Mathematics, 22(2), 157–177. https://doi.org/10.5540/tcam.2021.022.02.00157

Edição

Seção

Artigo Original