Some Special Integer Partitions Generated by a Family of Functions
DOI:
https://doi.org/10.5540/tcam.2023.024.04.00717Palavras-chave:
Integer partition, mock theta function, matrix representation, partition identityResumo
In this work, inspired by Ramanujan’s fifth order Mock Theta function f1(q), we define a
collection of functions and look at them as generating functions for partitions of some integer n containing at least m parts equal to each one of the numbers from 1 to its greatest part s, with no gaps.We set a two-line matrix representation for these partitions for any m ≥ 2 and collect the values of the sum of the entries in the second line of those matrices. These sums contain information about some parts of the partitions, which lead us to closed formulas for the number of partitions generated by our functions, and partition identities involving other simpler and well known partition functions.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.