Positivity and equilibrium in a fractional SIR model with Mittag-Leffler memory
DOI:
https://doi.org/10.5540/tcam.2024.025.e01789Palavras-chave:
Fractional SIR model, Mittag-Leffler functions, positivity, integrodifferential equations, equilibriumResumo
We present two slightly different constructions of a SIR model in which both the time taken to remove the individual from the infectious compartment and the infectivity have a memory according to Mittag-Leffler distributions. The second construction clearly points out where the proposed generalizations are acting, starting from the classic SIR model. Using integrodifferential techniques, we state and demonstrate novel analytically results on positivity, monotonicity in limiting case, and equilibrium points. The results are also verified numerically.
Referências
C. N. Angstmann, B. I. Henry, and A. V. McGann, “A fractional order recovery SIR model from a stochastic process,” Bulletin of mathematical biology, vol. 78, no. 3, pp. 468–499, 2016.
C. N. Angstmann, B. I. Henry, and A. V. McGann, “A fractional-order infectivity SIR model,” Physica A: Statistical Mechanics and its Applications, vol. 452, pp. 86–93, 2016.
C. N. Angstmann, B. I. Henry, and A. V. McGann, “A fractional-order infectivity and recovery SIR model,” Fractal and Fractional, vol. 1, no. 1, p. 11, 2017.
N. Z. Monteiro and S. R. Mazorche, “Fractional derivatives applied to epidemiology,” Trends in Computational and Applied Mathematics, pp. 157–177,2021.
N. Z. Monteiro and S. R. Mazorche, “Analysis and application of a fractional SIR model constructed with Mittag- Leffler distribution,” in Proceedings of the XLII CILAMCE, (Online), CILAMCE, 2021.
N. Z. Monteiro, R. W. Dos Santos, and S. R. Mazorche, “Constructive fractional models through Mittag-Leffler functions,” Computational and Applied Mathematics, 2023. Submitted.
K. Oldham and J. Spanier, The Fractional Calculus theory and applications of differentiation and integration to arbitrary order. New York: Elsevier, 1974.
K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations. New York: Wiley, 1993.
S. G. Samko, A. A. Kilbas, O. I. Marichev, et al., Fractional integrals and derivatives, vol. 1. Switzerland: Gordon and breach science publishers, Yverdon Yverdon-les-Bains, 1993.
I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. San Diego: Elsevier, 1998
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, vol. 204. Amsterdam: Elsevier, 2006.
K. Diethelm, The analysis of fractional differential equations: An application oriented exposition using differential operators of Caputo type. Heidelberg: Springer Science & Business Media, 2004.
N. Z. Monteiro and S. R. Mazorche, “Some remarks on an arbitrary-order SIR model constructed with Mittag-Leffler distribution,” Matemática Contemporânea, vol. 51, pp. 25–42, 2022.
W. O. Kermack and A. G. McKendrick, “Contributions to the mathematical theory of epidemics–i. 1927.,” Bulletin of mathematical biology, vol. 53, no. 1-2, pp. 33–55, 1991.
S. R. Mazorche and N. Z. Monteiro, “Modelos epidemiológicos fracionários: o que se perde, o que se ganha, o que se transforma?,” Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, vol. 8, no. 1, 2021.
N. Z. Monteiro and S. R. Mazorche, “Estudos numéricos em um modelo SIR fracionário,” Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, vol. 9, no. 1, 2022.
C. I. Doering and A. O. Lopes, Equações diferenciais ordinárias. No. 517.2 in Coleção Matemática Universitária, Rio de Janeiro: IMPA, 2008.
H. W. Hethcote, “The mathematics of infectious diseases,” SIAM review, vol. 42, no. 4, pp. 599–653, 2000.
R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Advances in Computational mathematics, vol. 5, no. 1, pp. 329–359, 1996.
H. W. Hethcote and D. W. Tudor, “Integral equation models for endemic infectious diseases,” Journal of mathematical biology, vol. 9, no. 1, pp. 37–47, 1980.
H. J. Haubold, A. M. Mathai, R. K. Saxena, et al., “Mittag-leffler functions and their applications,” Journal of applied mathematics, vol. 2011, 2011.
Z. Wu, Y. Cai, Z. Wang, and W. Wang, “Global stability of a fractional order SIS epidemic model,” Journal of Differential Equations, vol. 352, pp. 221–248, 2023.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Trends in Computational and Applied Mathematics
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NoDerivatives 4.0 International License.
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.