A Multiscale Neural Network Method for Image Restoration
DOI:
https://doi.org/10.5540/tema.2008.09.01.0041Resumo
This paper describes a novel neural network based multiscale image restoration approach. The method uses a Multilayer Perceptron (MLP) trained with synthetic gray level images of artificially degraded co-centered circles. The main difference of the present approach to existing ones relies on the fact that the space relations are used and they are taken from different scales, which makes it possible for the neural network to establish space relations among the considered pixels in the image. This approach attempts at coming up with a simple method that leads to an optimum solution to the problem without the need to establish a priori knowledge of existing noise in the images. The multiscale data is acquired by considering different window sizes around a pixel. The performance of the proposed approach is close to existing restoration techniques but it was observed that the resulting images showed a slight increase in contrast and brightness. The proposed technique is also used as a preprocessing phase in a real-life classification problem of medical Magnetic Resonance Images (MRI) by using a fuzzy classification technique.Referências
[1] M. Bertero, P. Boccacci, “Introduction to Inverse Problems in Imaging”, Philadelphia, Bristol, 1998.
J. Bezdek, R. Ehrlich, W. Full, FCM: The fuzzy c-means algorithm. Computers & Geosciences, 10, No. 2-3, (1984), 491–263.
Y.M. Bishop, S.E. Feinberg, P.W. Holland, “Discrete Multivariate Analysis: Theory and Practice”, Cambridge: MIT Press, 1975.
A.P.A. Castro, J.D.S. Silva, Neural Network-Based Multiscale Image Restoration Approach. In: Proceeding on Electronic Imaging, Vol. 6497, San Jose, pp. 3854–3859, 2007.
A.P.A. Castro, J.D.S. Silva, Neural Network-Based Multiscale Image Restoration Approach. In: Proceedings of IPDO, Miami, 2007.
J. Chen, J. Benesty, Y. Huang, S. Doclo, New insights into the noise reduction wiener filter, IEEE Trans. on Audio, Speech and Language Processing, 14, No.4 (2006), 1218–1234.
I. Drummond, S. Sandri, A clustering-based possibilistic method for image classification, Lecture Notes in Computer Science, 3171 (2004), 454–463.
I. Drummond, S. Sandri, A clustering-based fuzzy classifier, Frontiers in Artificial Intelligence and Applications, 131, No. 1 (2005), 247–254.
R.C. Gonzalez, R.C. Woods, “Digital Image Processing”, New York, Addison Wesley, 1992.
S. Haykin, “Redes Neurais: Princ´ıpios e Pr´atica”, P. Alegre, Bookman, 2001.
K.V.D. Heijden, “Image BasedMeasurement Systems”, New York,Wiley, 1994.
A.K. Jain, “Fundamentals of Digital Image Processing”, New Jersey, Prentice Hall, Inc, 1989.
A.D. Kulkarni, “Computer Vision and Fuzzy-Neural Systems”, New Jersey, Prentice Hall, 2001.
Y.D. Wu, Q.Z. Zhu, S.X. Sun, H.Y. Zhang, Image restoration using variational PDE-based neural network, Neurocomputing, 69, No. 16-18, (2006), 2364–2368.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.