Soluções Superluminais de Energia Finita das Equações de Maxwell
DOI:
https://doi.org/10.5540/tema.2002.03.01.0165Resumo
Recentemente alguns trabalhos [6, 17] apareceram na literatura mostrando que em algum meio hipotético existe a possibilidade da existência de pulsos eletromagn éticos superluminais (soluções das equações de Maxwell) tal que suas frentes viajam no meio com velocidades superluminais. As soluções descobertas em [6, 17], apesar de seu interesse teórico têm energia infinita e como tal não podem ser produzidas no mundo físico. Somente aproximações de abertura finita para estas ondas podem eventualmente ser produzidas (supondo a existência do tal meio especial). O objetivo deste trabalho é mostrar que em contraste com as soluções descobertas em [6, 17] (que, como já afirmado têm energia infinita), existem soluções das equações de Maxwell no vácuo que são soluções (exatas) superluminais de energia finita. Estas soluções, como veremos, aparecem como soluções de problemas tipo Sommerfeld [1, 9]. Estudamos também o aparente paradoxo que ocorre quando uma solução superluminal gerada em um sistema inercial L é observada pelos observadores em repouso em um sistema inercial Z que se move com velocidade |~V | = V em relação a L. Discutimos também se tais soluções podem ser geradas no mundo físico.Referências
[1] L. Brillouin, “Wave Propagation and Group Velocity”, Academic Press, New York, 1960.
E. Capelas de Oliveira, W.A. Rodrigues Jr, D.S. Thober and A.L. Xavier, Thoughtful comments on ‘Bessel beams and signal propagation’, Phys. Lett. A, 284 (2001), 296-303.
E. Capelas Oliveira and W.A. Rodrigues, Jr., Superluminal electromagnetic waves in free space, Ann. der Physik, 7 (1998), 654-659.
R. Courant and D. Hilbert, “Methods of Mathematical Physics”, vol. 2, John Wiley and Sons, New York, 1966.
J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A, 4 (1987), 651-654.
P. Ghose and M.K. Samal, Lorentz invariant superluminal tunneling, Phys. Rev. E, 64 (2001), to appear.
A.A. Grib andW.A. Rodrigues, Jr., “Nonlocality in Quantum Physics”, Kluwer Acad./Plenum Publ., New York, 1999.
J.E. Maiorino and W.A. Rodrigues, Jr., What is Superluminal Wave Motion?, electronic book at http://www.cptec.br/stm, Sci. and Tech. Mag., 4, No. 2 (1999).
F.A. Mehmeti, “Transient Tunnel Effect and Sommerfeld Problem”, Akademie Verlag, Berlin, 1996.
D.Mugnai, A. Ranfagni and R. Ruggeri, Observation of superluminal behaviors in wave propagation, Phys. Rev. Lett., 84 (2000), 4830-4833.
W.K.H. Panofski and M. Phillips, “Classical Electricity and Magnetism”, 2nd ed., Addison-Wesley, Reading, MA, 1962.
W.A. Rodrigues Jr., D.S. Thober and A.L. Xavier, Jr., Causal explanation for observed superluminal behavior of microwave propagation in free space, Phys. Lett. A, 284 (2001), 217-224.
W. A. Rodrigues, Jr. and J.Y. Lu, On the existence of undistorted progressive waves (UPWs) of arbitrary speeds 0 ≤ v ≤ ∞ in nature, Found. Phys., 27 (1997), 435-508.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.