Um modelo matemático em quimioterapia

Autores

  • Diego S. Rodrigues
  • Suani T. R. Pinho
  • Paulo F. A. Mancera

DOI:

https://doi.org/10.5540/tema.2012.013.01.0001

Resumo

Modelo matemático aplicado em câncer é considerado para entender os motivos que levam ao tratamento quimioterápico mal sucedido. Frente às implicações do tratamento oncológico, os resultados indicam que a administração de baixas doses e longos intervalos de tempo entre as dosagens estão relacionados ao fracasso terapêutico.

Referências

J. Aroesty, T. Lincoln, N. Shapiro, G. Boccia, Tumor growth and chemotherapy: mathematical methods, computer simulations, and experimental foundations, Math. Biosc., 17 (1973), 243–300.

Baxter, Genuxal (ciclofosfamida), em “Guia Prático de Prescrição e Consulta” , (Alamtec, ed.), São Paulo, Aquaprint, 2005.

E.M.A. Bonassa, “Enfermagem em quimioterapia”, São Paulo, Livraria Atheneu Editora, 1992.

Brasil, Bases do tratamento, em “Ações de Enfermagem para o Controle do Câncer: uma proposta de integração de ensino” , (INCA, ed.), Rio de Janeiro, INCA, 2008.

Brasil, “Estimativas 2010: incidência de câncer no Brasil”, Rio de Janeiro, INCA, 2010. 212p.

R.N. Buick, Cellular basis of chemotherapy, em “Cancer

Chemotherapy Handbook” , (R.T. Dorr, D.D.V. Hoff, eds.), Appleton and Lange, 1994. p.9.

H.I. Freedman, F.K. Nani, “A Mathematical Model of Cancer Treatment by Chemotherapy”, Preprint, 1–38, 1998.

R.A. Gatenby, Application of competition theory to tumour growth: implications for tumour biology and treatment, Eur. J. Cancer, 32A (1996), 722–726.

R.A. Gatenby, A change of strategy in the war on cancer, Nature, 459 (2009), 508–509.

H. Lüllmann, K. Mohr, A. Ziegler, D. Bieger, “Color Atlas of Pharmacology”, New York, Thieme Stuttgart, 2000.

R. Martin, K.L. Teo, “Optimal Control of Drug Administration in Cancer Chemotherapy”, Singapore, World Scientific, 1993.

R.D. Mosteller, Simplified calculation of body surface area, N. Engl. J. Med., 1098, 1987.

L. Norton, Introduction, em “A Synopsis of Cancer Chemotherapy” , (R.T. Silver, R.D. Lauper, C.I. Jarowski, eds.), New York, York Medical Books, 1987. p.24.

J.C. Panetta, K.R. Fister, Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM J. Appl. Math., 63 (2003), 1954–1971.

S.T.R. Pinho, H.I. Freedman, F.K. Nani, A chemotherapy model for the treatment of cancer with metastasis, Math. Comp. Model., 36 (2002), 773–803.

P. Pisani, F. Bray, D.M. Parkin, Estimates of the world-wide prevalence of cancer for 25 sites in the adult population, Int. J. Cancer, 97 (2001), 72–81.

E.A. Reis, L. Santos, S.T.R. Pinho, Cellular automata model for a vascular solid tumor growth under the effect of therapy, Physica A: Statist. Mechanic

Appl., 338 (2009), 1303–1314.

D.S. Rodrigues, P.F.A. Mancera, S.T.R. Pinho, A simple mathematical model for vascular tumours under different chemotherapy schedules, Preprint, 1–45, 2011.

H.E. Skipper, F.M. Schaebel-Jr., W.S. Wilcox, Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with curability of experimental leukemia, Cancer Chemother. Rep., 35, (1964), 1– 111.

J.S. Spratt, J.S. Meyer, J.A. Spratt, Rates of growth of human neoplasms: part II, J. Surg. Oncol., 61 (1996), 68–73.

G.S. Stamatakos, E.A. Kolokotroni, D.D. Dionysiou, E.C. Georgiadi, C. Desmedt, An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumor to chemotherapy: mimicking a clinical study, J. Theor. Biol., 266 (2010), 124–139.

V.G. Vaidya, F.J. Alexandro-Jr, Evaluation of some mathematical models for tumor growth, Int. J. Bio-Med. Comp., 13 (1982), 19–35.

R. A.Weinberg, “A Biologia do Câncer”, Porto Alegre, Tradução Bruna Selbach et al. Artmed, 2008.

Downloads

Publicado

2012-03-17

Como Citar

Rodrigues, D. S., Pinho, S. T. R., & Mancera, P. F. A. (2012). Um modelo matemático em quimioterapia. Trends in Computational and Applied Mathematics, 13(1), 01–12. https://doi.org/10.5540/tema.2012.013.01.0001

Edição

Seção

Artigo Original