Função de Intensidade Poisson Perturbada pelo Número de Eventos Recorrentes

Autores

  • Mari Roman UFSCar
  • S. L. Caetano Centro Universitário da Fundação Educacional de Barretos
  • Francisco Louzada ICMC-USP
  • J. C. Fogo Departamento de Estatística, DEs-UFSCar, Universidade Federal de São Carlos

DOI:

https://doi.org/10.5540/tema.2013.014.03.0429

Resumo

Neste trabalho modela-se a função de intensidade de um processo de Poisson considerando o tempo e o total de recorrências, condicionados ao momento anterior. Adotamos um componente para o processo de Poisson e o outro para o número total de eventos ocorridos nesta mesma unidade. Estudos de simulação e testes de hipóteses empíricos da significância dos parâmetros no modelo foram realizados.  A significância dos testes de hipótese de \emph{Wald} e de razão de verossimilhança foi aproximadamente $10\%$ para mais de 50 ocorrências. Um conjunto de dados com tempos de recorrência na aquisição de cosméticos foi modelado adequadamente, tendo parâmetros significativos e valores estimados próximos dos valores observados, justificando a utilização do modelo proposto para tempos e números de recorrências em uma unidade amostral.

Referências

Ascher, H. & Feingold, H. (1984). Reparable Systems Reliability: Modelling, Inference, Misconceptions and Their Causes. New York, Marcel Dekker.

Bain, L. J. & Engelhardt, M. (1980). Inferences on the Parameters and Current System Reliability for a Time Truncated Weibull Process. Technometrics, 22, 421-426.

Cook, R. (1995). The design and analysis of randomized trials with recurrent events. Statistics in Medicine, 14, 2081-2098.

Cook, R. & Lawless, J. (1997). Marginal analysis of recurrent events and a terminating event, Statistics in Medicine, textbf{16}, 911-924.

Cook, R. J. & Lawless, J. F. (2002). Analysis of repeated events. Statistical Methods in Medical Research. 11, 141-166.

Cox, D. R. & Lewis, P. A. W. (1966). The Statistical Analysis of Series of Events. London: Methuen.

Cox, D. R. & Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman & Hall.

Crowder, M. J., Kimber, A. C., Smith, R. L. & Sweeting, T. J. (1991). Statistical Analysis of Reliability Data. London: Chapman and Hall.

Guo, H., Zhao, W. & Mettas, A. (2006). Practical methods for modeling repairable systems with time trends and repair effects. Proceedings of Annual Reliability and Maintainability Symposium, California, 182-188.

Lawless, J. F. (1987). Regression Methods for Poisson Process Data. Journal of the American Statistical Association, 82, 807-815.

Lawless, J.F. & Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent events. Technometrics, 37, 158-168.

Lawless, J. F. & Thiagarajah, K. (1996). A point-process model incorporating renewals and time trends, with application to repairable systems. Technometrics, 38, 131-138.

Lehmann, E. L. (1999). Elements of Large-sample Theory. New York Springer-Verlag, New York.

Lee, L., & Lee, K. (1978). Some Results on Inference for the Weibull Process. Technometrics, 20 41-45. % ok

Lindqvist, B.H., Elvebakk, G. & Heggland K. (2003). The trend-renewal process for statistical analysis of repairable systems. Technometrics, 45, 31-44.

Louzada, F., Mazuchelli, J. & Achcar, J. A. (2002). Introdução à Análise de Sobrevivência e Confiabilidade. III Jornada Regional de Estatística.

Nelson, W. (1995). Confidence Limits for Recurrence Data - Applied to Cost or Number of Product Repair. Technometrics, 37, 147-157.

R Development Core Team (2011). R: A Language and Environment for Statistical Computating. R Foundation for Statistical Computing, Vienna, Austria.

Tomazella, V. L. D. (2003). Modelagem de dados de eventos recorrentes via processos de Poisson com termo de fragilidade, 165p. Tese. (Doutorado em Ciências de Computação e Matemática Computacional)- Instituto de Ciências Matemáticas de São Carlos, Universidade de São Paulo, São Carlos.

Downloads

Publicado

2013-01-03

Como Citar

Roman, M., Caetano, S. L., Louzada, F., & Fogo, J. C. (2013). Função de Intensidade Poisson Perturbada pelo Número de Eventos Recorrentes. Trends in Computational and Applied Mathematics, 14(3), 429–440. https://doi.org/10.5540/tema.2013.014.03.0429

Edição

Seção

Artigo Original