Identificação de Madeiras utilizando a Espectrometria no Infravermelho Próximo e Redes Neurais Artificiais
DOI:
https://doi.org/10.5540/tema.2015.016.02.0081Resumo
A identificação de uma árvore torna-se complexa quando tem-se à disposição apenas amostras de madeira, o que exige uma análise mais profunda para sua caracterização. Utilizando-se a espectrometria no infravermelho próximo é possível obter-se espectros com informações únicas sobre a composição química de uma amostra de madeira. Porém, a interpretação dos dados obtidos pelo espectrômetro é complexa, o que dificulta a identificação de características específicas para uma determinada espécie. Neste trabalho, com o intuito de acelerar o processo de identificação, utilizou-se um sistema embasado em Redes Neurais Artificiais para a classificação de quatro espécies mediante a análise dos espectros das suas madeiras. Foram realizados três testes para comprovar a eficiência da capacidade de reconhecimento, obtendo-se resultados promissores visto que a Rede Neural Artificial utilizada revelou-se flexível aos ruídos e distorções existentes, não exigindo que os espectros passem por prévio tratamento estatístico ou fossem separados por grupos relativos ao tipo de corte anatômico da madeira.Referências
R. Bremananth, B. Nithya, R. Saipriya, Wood Species Recognition System,International Journal of Electrical and Computer Engineering, (2009), 44--58.
J. W. B. Braga, et al., The use of near infrared spectroscopy to identify solid wood specimens of swietenia macrophylla (cites appendix II), Holzforschung, Vol. 32. (2011). 285--296.
M. T. Hagan, M. B. Menhaj, Training feedforward networks with marquardt algorithm, IEEE Transactions on Neural Networks, Vol. 5. No. 6 (1994). 989--993.
M. T. Hagan, H. B. Demuth, M. Beale, ``Neural Network Design'', Boston: Thomson Publishing INC., 1996, cap. 2.
S. Haykin, `` Redes Neurais: Princípios e Prática'', Bookman, 2001.
E. Hecht, `` Optics'', 4ª Ed. Addison-Wesley. 2001.
A. R. Silva, et al., Assessment of total phenols and extractives of mahogany wood by near infrared spectroscopy (NIRS), Holzforschung, Vol. 67. (2013). 1--8.
A. A. Oliveira, ``Identificação de madeira utilizando a espectrometria no infravermelho próximo e redes neurais com a heurística de levemberg-marquardt'', Dissertação de Mestrado, PPGMNE, UFPR, Curitiba, Pr, 2013.
B. Stuart, ``Infrared Spectroscopy: Fundamentals and Applications'', Hoboken: Wiley, 2004.
T. Theophanides, Introduction to infrared spectroscopy. Infrared Spectroscopy - Materials Science, Engineering and Technology, abril 2012.
Downloads
Arquivos adicionais
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.