Solução Exata e Estabilização Exponencial para a Equação de Allen-Cahn
DOI:
https://doi.org/10.5540/tcam.2021.022.04.00559Keywords:
Equação de difusão, Equação de Allen-Cahn, Solução exata, Estabilização exponencial.Abstract
Neste trabalho estudamos algumas propriedades qualitativas da equação de Allen-Cahn. Esta equação tem sido amplamente estudada em diversas áreas da ciência e principalmente na evolução de microestruturas durante o processo de solidicação de um metal puro ou liga metálica. Os principais resultados obtidos neste trabalho são a solução exata, a energia de Ginzburg-Landau e a propriedade de decaimento exponencial do sistema. A solução analítica do problema foi obtida pelo método da separação de variáveis graças a uma escolha adequada do coeciente de reação. Com isto, passamos a considerar dois problemas, um problema de valor inicial e o outro de valor de contorno, em que ambos foram resolvidos. Em relação a estabilização exponencial da energia total de solução, usamos técnicas multiplicativas para estabelecer a lei de dissipação da energia e, em seguida, algumas desigualdades para construir a estimativa de decaimento exponencial.
References
R. KOBAYASHI, "Modeling and numerical simulations of dendritic crystal growth", Physica D, vol. 63, no. 3-4, pp. 410-423, 1993.
S. ALLEN and J. CAHN, "A microscopic theory for antiphase boundary motion and its apllication to antiphase domain coaserning", Acta Metall, vol. 27,pp. 1084-1095, 1979.
A. KARMA and W. RAPPEL, "Quantitative phase-eld modeling of dendritic growth in two and three dimensions", Physical Review E Physics, vol. 57,pp. 4323-4349, 1998.
X. CHEN, "Generation, propagation, and annihilation of metastable patterns", Journal of Differential Equations, vol. 206, pp. 399-437, 2004.
M. UZUNCA and B. KARASOZEN, "Energy stable model order reduction for the allen-cahn equation", in Model Reduction of Parametrized Systems, pp. 403-419, Springer, 2017.
L. C. EVANS, Partial differential equations, vol. 83. Wiley, 1999.
E. P. Zemskov and A. Loskutov, "Exact analytical solutions for nonlinear waves in the inhomogeneous Fsher-kolmogorov equation", The European Physical Journal B, vol. 79, pp. 79-84, dec 2010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.