Um Método Newton-Inexato com Estratégia Híbrida para Globalização
DOI:
https://doi.org/10.5540/tema.2008.09.01.0011Abstract
Neste trabalho, o objetivo é propor um algoritmo Newton-inexato com propriedade de convergência global para resolução de sistemas não-lineares. Para a globalização, propomos uma abordagem híbrida, envolvendo, além de busca linear,o método de regiões de confiança Dogleg. Para a resolução dos sistemas lineares, optamos por usar o método GMRES, que permite o uso implícito das matrizes e possibilita trabalhar com a estratégia matrix–free.References
[1] S. Bellavia, B. Morini, A globally convergent Newton-GMRES subspace method for system of nonlinear equations, SIAM J. Sci. Comput., 23 (2001), 940-960.
E.J. Birgin, N. Kre˘i´c, J.M. Mart´ınez, Globally convergent inexact quasi Newton methods for solving nonlinear systems, Numerical Algorithms (2003), 249-260.
P.N. Brown, Y. Saad, Hybrid methods for nonlinear systems of equations, SIAM Journal of Sci. Stat. Comput., 11 (1990), 450-481.
R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982), 401-408.
J.E. Dennis, H.H.W. Mei, Two new unconstrained optimization algorithms which use function and gradient values, J. Optim. Theory Appl., 28 (1979), 453-482.
J.E. Dennis, R.B. Schnabel, “Numerical Methods for Unconstrained Optimization and Nonlinear Equations”, SIAM, Philadelphia, 1996.
E.D. Dolan, J.J. Mor´e, Benchmarking optimization software with performance profiles, Math. Programming Ser., A91 (2002), 201-213.
S.C. Eisenstat, H.F. Walker, Choosing the forcing terms in inexact-Newton methods, SIAM J. Sci. Comput., 17 (1996), 16-32.
C.T. Kelley, “Iterative Methods for Linear and Nonlinear Equations”, SIAM, Philadelphia, 1995.
L. Luksˇan, Inexact trust region method for large sparse system of nonlinear equations, J. Optim. Theory Appl., 81 (1994), 569-590.
Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorith for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), 856-869.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.