Um Método Newton-Inexato com Estratégia Híbrida para Globalização
DOI:
https://doi.org/10.5540/tema.2008.09.01.0011Resumo
Neste trabalho, o objetivo é propor um algoritmo Newton-inexato com propriedade de convergência global para resolução de sistemas não-lineares. Para a globalização, propomos uma abordagem híbrida, envolvendo, além de busca linear,o método de regiões de confiança Dogleg. Para a resolução dos sistemas lineares, optamos por usar o método GMRES, que permite o uso implícito das matrizes e possibilita trabalhar com a estratégia matrix–free.Referências
[1] S. Bellavia, B. Morini, A globally convergent Newton-GMRES subspace method for system of nonlinear equations, SIAM J. Sci. Comput., 23 (2001), 940-960.
E.J. Birgin, N. Kre˘i´c, J.M. Mart´ınez, Globally convergent inexact quasi Newton methods for solving nonlinear systems, Numerical Algorithms (2003), 249-260.
P.N. Brown, Y. Saad, Hybrid methods for nonlinear systems of equations, SIAM Journal of Sci. Stat. Comput., 11 (1990), 450-481.
R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982), 401-408.
J.E. Dennis, H.H.W. Mei, Two new unconstrained optimization algorithms which use function and gradient values, J. Optim. Theory Appl., 28 (1979), 453-482.
J.E. Dennis, R.B. Schnabel, “Numerical Methods for Unconstrained Optimization and Nonlinear Equations”, SIAM, Philadelphia, 1996.
E.D. Dolan, J.J. Mor´e, Benchmarking optimization software with performance profiles, Math. Programming Ser., A91 (2002), 201-213.
S.C. Eisenstat, H.F. Walker, Choosing the forcing terms in inexact-Newton methods, SIAM J. Sci. Comput., 17 (1996), 16-32.
C.T. Kelley, “Iterative Methods for Linear and Nonlinear Equations”, SIAM, Philadelphia, 1995.
L. Luksˇan, Inexact trust region method for large sparse system of nonlinear equations, J. Optim. Theory Appl., 81 (1994), 569-590.
Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorith for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), 856-869.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.