Um Novo Algoritmo para a Discriminação de Estados Quânticos
DOI:
https://doi.org/10.5540/tema.2011.012.02.0125Abstract
A melhor estratégia para a discriminação de estados quânticos não ortogonais está relacionada com o melhor conjunto de medidas POVM. Apresentamos um novo algoritmo para o problema, estendendo o espaço de Hilbert associado e usando a programação semidefinida e a resolução de sistemas não-lineares.References
[1] T.M. Cover, J.A. Thomas, “Elements of Information Theory”, Wiley, 1991.
[2] Y.C. Eldar, A semidefinite programming approach to optimal unambiguous discrimination of quantum states, IEEE Transactions on Information Theory, 49 (2003), 446–456.
[3] L.K. Grover, Quantum mechanics help in searching for a needle in a haustack, Physical Review Letters, 79 (1997), 325–328.
[4] C. Helmberg, F. Rendl, R.J. Vanderbei, H.Wolkowicz, An interior point method for semidefinite programming, SIAM Journal on Optimization, 6 (1996), 342–361.
[5] I.D. Ivanovic, How to differentiate between non-orthogonal states, Physics Letters A, 123 (1987), 257–259.
[6] M.A. Nielsen, I.L. Chuang, “Quantum Computation and Quantum Information”, Cambridge University Press, 2000.
[7] A. Peres, “Quantum Theory: Concepts and Methods”, Kluwer, Boston, 1993.
[8] W.R.M. Rabelo, “Algoritmos para a Informação Quântica: discriminação de estados quânticos e modelo híbrido”, Tese de Doutorado, UFMG, Belo Horizonte, MG, 2006.
[9] W.R.M. Rabelo, A.G. Rodrigues, R.O. Vianna, An algorithm to perform POVMs through Neumark theorem: application to the discrimination of nonorthogonal pure quantum states, International Journal of Modern Physical C, 17 (2006), 1–16.
[10] L. Roa, J.C. Retamal, C. Saavedra, Quantum-state discrimination, Physical Review A, 66 (2002), 1–4.
[11] T.S. Evangelista, “Discriminação de Estados Quânticos via Programação Semidefinida”, Tese de Doutorado, UNICAMP, Campinas, SP, 2009.
[12] H. Wolkowicz, R. Saigal, L. Vandenbergue, “Handbook of Semidefinite Programming: Theory, Algorithms and Applications”, Kluwer, 2000.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.