Homotopia Intervalar
DOI:
https://doi.org/10.5540/tema.2011.012.02.0145Abstract
Nesse trabalho apresentamos uma formalização do conceito matemático de homotopia mergulhado no ambiente das funções intervalares definidas sobre o conjunto dos intervalos com extremos reais I(R), tanto considerando a Scottcontinuidade quanto a Moore-continuidade. Definimos o que é uma homotopia Scott intervalar, bem como o que é uma homotopia Moore intervalar. Em seguida mostramos que esses dois conceitos coincidem para representações canônicas. Para finalizar, mostramos alguns resultados envolvendo homotopia intervalar e conceitos relacionados, tais como composição de homotopias e retrato por deformação.References
[2] B.R.C. Bedregal, A. Takahashi, The best interval representation of T-norms and automorphisms, Fuzzy Sets and Systems, 157, No. 24 (2006), 3220–3230.
[3] J.C. Burkill, Functions of intervals, Proceedings of the London Mathematical Society, 375–446, (1924).
[4] J. Dugundji, “Topology”, Allyn and Bacon Inc., Boston, 1966.
[5] P.S. Dwyer, “Computation with Approximate Numbers”, p. 11–34, Wiley and Sons, New York, 1951.
[6] L. Jaulin, M. Kieffer, O. Didrit, E. Walter “Applied Interval Analysis”, Springer-Verlag, London, 2001.
[7] R.E. Moore, “Automatic Error Analysis in Digital Computation”, Technical Report LMSD-4842, Lockheed Missiles and Space Division, Sunnyvale, California, 1959.
[8] R.E. Moore, “Interval Analysis”, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[9] R.E. Moore, R.B. Kearfott, M.J. Cloud,“Interval Analysis”, Society for Industrial and Applied Mathematics, PA, 2009.
[10] J.R. Munkres, “Topology, a First Course”, Prentice Hall, Englewood Cliffs, NJ, 1975.
[11] J. Piper, Interval Skeletons, In “Proceedings 11th IAPR Internacional Conference on Pattern Recognition”, vol. III, 1992.
[12] R.H.N. Santiago, B.C. Bedregal, B.M. Acióly, Comparing continuity of interval functions based on Moore and Scott topologies, Eletronic Journal on Mathematics of Computation (2005), disponível em http://www.cin.ufpe.br/ejmc.
[13] R.H.N. Santiago, B.C. Bedregal, B.M. Acióly, Formal aspects of correctness and optimality of interval computations, Formal Aspects of Computing, 18 (2006), 231–243.
[14] T. Sunaga, Theory of an interval algebra and its application to numerical analysis, RAAG Memoirs, 2 (1958), 547–564.
[15] W. Taylor, Simple equations on real intervals, Algebra Univers., 61 (2009), 213–226.
[16] G.W. Whitehead, “Elements of Homotopy theory”, Springer-Verlag, NY, 1978.
[17] M. Warmus, “Calculus of Approximations”, Bull. Acad. Polon. Sci. Cl. III, 4 (1956), 463–464.
[18] R.C. Young, The algebra of many-valued quantities, Math. Ann., (1931), 260–290.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.