Problema Creep-Térmico na Dinâmica de Gases Rarefeitos Baseado no Modelo BGK

Autores

  • Rosenei Felippe Knackfuss Universidade Federal de Santa Maria

DOI:

https://doi.org/10.5540/tema.2012.013.01.0063

Resumo

Neste trabalho, apresenta-se resultados numéricos para perfil de velocidade, perfil de fluxo de calor, taxa de fluxo de partículas e taxa de fluxo de calor, relativas ao movimento de um gás rarefeito através de um canal plano sujeito a
um gradiente de temperatura. Considera-se, aqui, o canal definido por duas placas paralelas com diferentes constituições químicas, isto é, com coeficientes de acomodação diferentes. Para solucionar este problema, denominado de Creep-Térmico,
inicialmente a equação de Boltzmann é aproximada pelas equações cinéticas que, neste caso, é baseada no modelo BGK. O processo de interação entre o gás e a superfície é descrito pelo modelo de Maxwell e pela condição generalizada de
Cercignani-Lampis. A solução do problema é encontrada através de uma versão analítica do método de ordenadas discretas (ADO).

Biografia do Autor

Rosenei Felippe Knackfuss, Universidade Federal de Santa Maria

Departamento de Matemática - CCNE

Referências

L. B. Barichello and M. Camargo and P. Rodrigues and C. E. Siewert, Unified solutions to classical flow problems based on the BGK model, Zeitschrift fur Angewandte Mathematik und Physik, 52 (2001), 517-534.

L. B. Barichello and C. E. Siewert, A discrete-ordinates solution for a non-grey model with complete frequency redistribution, Journal of Quantitative Spectroscopy and Radiative Transfer, 62 (1999), 665-675.

P. L. Bhatnagar and E. P. Gross and M. Krook, A model for colission precesses in gas. I. Small amplitude processes in charged and neutral one-component systems, Physics Review, 94 (1954), 511-525.

C. Cercignani, “The Boltzmann Equation and Its Applications”, Springer- Verlag, New York, 1988.

C. Cercignani and M. Lampis, Kinetic models for gas-surface interaction, Transport Theory and Statistical Physics, 1 (1971), 101-114.

R. F. Knackfuss and L. B. Barichello, Surface effects in rarefied gas dynamics: an analysis based on the Cercignani-Lampis boundary condition, European Journal of Mechanics B/Fluids, 25 (2006), 113-129.

R. F. Knackfuss and L. B. Barichello, On the temperature-jump problem in rarefied gas dynamics: the effect of the Cercignani-Lampis boundary condition, SIAM - Journal on Applied Mathematics, 66 (2006), 2149-2186.

F. Sharipov, Application of the Cercignani-Lampis scattering kernel to calculations of rarefied gas flows. I. Plane flow between two parallel plates, European Journal in Mechanics B/Fluids, 21 (2002), 113-123.

R. D. M. Garcia and C. E. Siewert, The linearized Boltzmann equation with Cercignani-Lampis booundary conditions: Basic flow problems in a plane channel, European Journal in Mechanics B/Fluids, 28 (2009), 387-396.

L. C. Cabrera and L. B. Barichello, Unified solution to some classical problems in rarefied gas dynamics based on the one-dimensional linearized S-model equations, Zeitschrift fur Angewandte Mathematik und Physik, 57 (2006), 285-312.

F. Sharipov and V. Seleznev, Data on internal rarefied gas flows, Journal of Physical and Chemical Reference Data, 27 (1998), 657-705.

R. G. Lord, Tangential momentum accommodation coeficients of rare gases on polycrystalline metal surfaces, Program Astronautics and Aeronautics, Part I, J. L. Potter, ed., AIAA, New York, 51 (1977), 531-538.

F. Sharipov, Data on the velocity slip and temperature jump coefficients, em “5th Annual International Conference on Thermal and Mechanical Simulation Experiments in Micro-Electronics and Micro-Systems”, pp. 243-249, Brussels,

Belgium, 2004.

C. E. Siewert, Generalized boundary conditions for the S-model kinetic equations basic to flow in a plane channel, Journal of Quantitative Spectroscopy and Radiative Transfer, 72 (2001), 75-88.

B. T. Porodnov, P. E. Suetin, S. F. Borisov and V. D. Akinshin, Experimental investigation of rarefied gas flow in different channels, Journal of Fluid Mechanics, 64 (1974), 417-437.

L. B. Thomas, A Collection of Some Controlled Surface Thermal Accommodation Coefficient Measurements, Rareed Gas Dynamics, C. L. Brundin, ed., Academic Press, New York, (1967) 155-162.

M.M.R. Williams, A Review of the rarefied gas dynamics theory associated with some classical problems in flow and heat transfer, Zeitschrift fur Angewandte Mathematik und Physik, 52 (2001), 500-516.

Downloads

Publicado

2012-03-17

Como Citar

Knackfuss, R. F. (2012). Problema Creep-Térmico na Dinâmica de Gases Rarefeitos Baseado no Modelo BGK. Trends in Computational and Applied Mathematics, 13(1), 63–74. https://doi.org/10.5540/tema.2012.013.01.0063

Edição

Seção

Artigo Original